
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024 1

Armor: Protecting Software Against Hardware
Tracing Techniques

Tai Yue, Fengwei Zhang§, Zhenyu Ning, Pengfei Wang, Xu Zhou§, Kai Lu, and Lei Zhou

Abstract—Many modern processors have embedded hard-

ware tracing techniques (e.g., Intel Processor Trace or ARM

CoreSight). While these techniques are widely used due to

their transparency and low overhead, they also bring serious

security threats. Attackers can utilize hardware tracing to

trace the trusted applications from a non-secure application.

Existing protection techniques fail to effectively protect the

runtime information when hardware tracing is employed.

To counter these threats, in this paper, we propose a

novel direction called anti-hardware tracing. Our key idea is

to exploit the limitations of hardware tracing: trace buffer

overflow can cause trace data loss. We build a model to

analyse the overflow and outline three principles for efficient

triggering overflows and achieving anti-hardware tracing:

numerous branches in the program, high-speed execution of

the program, and the high-water mark of the trace buffer.

We develop a framework called Armor on ARM Juno R2 to

realize our approach. Armor protects software against the

trace unit Embedded Trace Macrocell (ETM) in CoreSight by

instrumenting protection and loop functions. The protection

function detects runtime environments, efficiently fills the

trace buffer, and employs various protection strategies like

PID (process identifier) replacement and PIE+STRIP+ASLR.

Meanwhile, the loop function triggers overflows efficiently

based on context-based calculations and anti-ETM loop.

Our evaluation demonstrates that the overhead of Armor

is 77.31% lower than that of OLLVM [1] on SPEC2006. Armor

effectively hides 54.51% of basic blocks across 16 real-world

applications, triggering 113× more overflows. Moreover, we

showcase two practical applications of Armor. Firstly, we

conduct a cryptographic and cross-world attack on GnuPG

Manuscript received September 1, 2023; revised December 20, 2023 and
January 26, 2024; accepted February 19, 2024. Date of publication February
22, 2024; date of current version February 22, 2024. This work was sup-
ported in part by the National Natural Science Foundation China under
Grant 62372218, Grant 62002151, Grant 62272472, and Grant 62306328,
in part by the Shenzhen Science and Technology Program under Grant
SGDX20201103095408029, and in part by the Natural Science Foundation
of Hunan Province of China under Grant 2023RC3021. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Edgar Weippl. (Corresponding author: Fengwei Zhang and Xu Zhou.)

Tai Yue is with the College of Computer, National University of Defense
Technology, Changsha 410073, China (e-mail: yuetai17@nudt.edu.cn). Tai
Yue is also a visiting student with the Department of Computer Science and
Engineering, and Research Institute of Trustworthy Autonomous Systems,
Southern University of Science and Technology, Shenzhen 518055, China.
This work was done while Tai Yue visiting at COMPASS lab.

Fengwei Zhang is with the Department of Computer Science and En-
gineering, and Research Institute of Trustworthy Autonomous Systems,
Southern University of Science and Technology, Shenzhen 518055, China
(e-mail: zhangfw@sustech.edu.cn).

Zhenyu Ning is with the College of Computer Science and Elec-
tronic Engineering, Hunan University, Changsha 410082, China (e-mail:
zning@hnu.edu.cn).

Pengfei Wang, Xu Zhou, Kai Lu, and Lei Zhou are with the College of
Computer, National University of Defense Technology, Changsha 410073,
China (e-mail: {pfwang, zhouxu, kailu, zhoulcs}@nudt.edu.cn).
§ Corresponding author: Fengwei Zhang (email: zhangfw@sustech.edu.cn)

and Xu Zhou (email: zhouxu@nudt.edu.cn)

1.4.13 RSA private keys using ETM, which can steal entire

keys from a program in the Secure world with a single

run. Armor successfully reduces leaked bits by 84.5%. Sec-

ondly, Armor impedes hardware-assisted fuzzing by reducing

throughput by 89.71% and branch coverage by 47.99%.

Index Terms—ARM CoreSight, hardware tracing, software

protection.

I. Introduction

M
ODERN CPUs are equipped with hardware tracing
techniques, such as Intel Processor Trace (PT) [2]

and ARM CoreSight [3]. These techniques can transparently
record the instructions executed by CPU and encode the run-
time information into trace packets with negligible overhead
(2-5%) [4]. Then, the users can retrieve the packets from the
memory buffer and decode them to analyse the information.
By examining the information with the disassembly code of
binary, users can recover its control flow. These techniques
have been employed in various fields, including fuzzing [5]–
[10], malware analysis [11]–[13], software debugging [14],
control flow integrity [15]–[20], and others [21]–[25].
While hardware tracing brings convenience to program

analysis, it also poses some security risks. Firstly, with the
upgrade of defense mechanisms, the Trusted Execution En-
vironment (TEE) technologies, such as Intel Software Guard
Extensions (SGX) [26] and ARM TrustZone [27], have been
widely deployed in commercial processors to protect the
security-critical applications [28]. Researchers also extend
the confidential computing to user space such as user-
level (Normal world) isolated environments [29]. Even if
an attacker gains the root or kernel privileges, the attack
may not directly access the memory within these secure
environments. However, many defense mechanisms, such as
ARM TrustZone [27] or Shelter [29], did not consider the
hardware tracing or provide protection against it. As a post-
root attack, hardware tracing can enable cross-privilege trac-
ing on specific devices [30], posing significant challenges to
existing protection mechanisms [30]–[32]. For example, Ning
et al. explored the flaws in authentication signals of ARM
CoreSight and proposed the nailgun attack [30]. This attack
employs ARM ETM, the trace unit in ARM CoreSight, to
non-invasively trace the Trusted Applications (TA) and steal
secure data (e.g., AES encryption key) in ARM TrustZone
from a non-secure application. Furthermore, adversaries can
combine Intel PT or ARM CoreSight with greybox fuzzing
to accelerate detecting the vulnerabilities in software [5]–
[10]. Particularly, inspired by the nailgun attack [30], some
greybox fuzzers have been built on ARM CoreSight to fuzz

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024 2

the TA in ARM TrustZone [33]–[35]. Therefore, protecting
the software against attackers who can exploit hardware
tracing is crucial in specific scenarios.

However, some existing protection techniques (e.g.,

anti-debugging, anti-tracing, and code obfuscation)

may not effectively achieve this goal. Traditional anti-
debugging or anti-tracing techniques usually focus on iden-
tifying external debuggers or attackers and preventing
them [36]–[38], such as measuring the time of executed
instructions and examining the process of debugger. How-
ever, hardware tracing can bypass these detections due to
its transparency and negligible runtime overhead [11], [14].
Some tools even leveraged hardware tracing to bypass the
anti-debugging techniques [14], [31], [32]. A possible way
to detect and disable the hardware tracing techniques is ac-
cessing and configuring their registers, while these registers
are only accessible for at last kernel-privilege process rather
than the software running at the user level without the root-
privilege ability (even in the Secure world). Code obfuscation
techniques primarily aim to protect software against mali-
cious modifications or reverse-engineering, rather than hard-
ware tracing [1], [39]–[44]. Though the obfuscated binaries
challenge attackers in understanding program semantics, we
argue that code obfuscation cannot prevent attackers from
obtaining information about the executed instructions and
incurs heavy overhead (we will prove this in our evaluation).

To address software security concerns posed by hardware
tracing, in this paper, we propose a new direction of soft-
ware protection, named anti-hardware tracing. We aim
to hide some runtime information of the programs under
hardware tracing, such as the control-flow information of
a secure applications in TEE. We leverage the limitations
of modern tracing techniques: the trace buffer overflow

issue. Specifically, modern CPUs have higher bandwidth
compared to memory, which poses a challenge in directly
writing trace data to memory without loss. To address this,
embedded hardware tracing units like Intel PT and ARM
ETM in CoreSight utilize on-chip trace buffers, such as the
64 KB SRAM on ARM Juno R2, to temporarily store trace
data with low latency. Then the trace buffer exports the trace
data to memory at a constant speed. However, if the trace
units generate an excessive amount of trace data at a high
frequency, the trace buffer might overflow and raise a signal
to stop trace units for a while until it recovers from the
overflow. During this time, the trace units are lockout while
CPUs are executing the instructions, resulting in the loss
of trace data. We define this as escaping from hardware

tracing. Additionally, certain runtime information, such as
conditional branches and destinations of indirect branches,
can only be determined by decoding tracing packets rather
than through static analysis. We define these instructions as
implicit-semantics points (return instruction is regarded
as the indirect branch in this paper). When executing these

instructions during trace buffer overflow, the tracing units

may miss this information. Therefore, hiding specific runtime
information under hardware tracing becomes feasible by
frequently triggering trace buffer overflow before reaching
these implicit-semantics points.

However, efficiently triggering trace buffer overflows poses
a challenge due to the careful design of trace units and
buffers by vendors. Inducing overflows in many programs
under normal execution can be difficult. To address this
challenge, we analyse the workflow of trace buffer through
model building and experiments in Section III. Then we point
out three principles for efficiently triggering trace buffer
overflow: 1) Numerous branches in program. Techniques
like Intel PT and ETMv4 conduct branch tracing, particularly
the destinations of indirect branches. Numerous executed

branches, particularly indirect branches, can make trace units

generate numerous trace data. 2) High-speed execution. The

program needs to run at high speed to generate trace packets

faster than the bandwidth at which the trace buffer outputs

them. This ensures that the trace buffer can potentially over-
flow. 3) High-water mark of the trace buffer. Compared

to an empty trace buffer, the buffer with a high-water mark of

trace data triggers the overflow more easily.

In this paper, we take ARM CoreSight as an example to
develop a compiler-level anti-hardware tracing framework
named Armor, as powerful attacks have been implemented
through CoreSight [30]. Developers can compile and rein-
force the software with Armor. Specifically, for satisfying
the proposed principles, Armor instruments two functions
in software: protection function and loop function. The
protection function is inserted in the program entry to
measure the execution speed of instructions for ensuring that
the program is running at a high speed (principle (2)), and fill
the empty trace buffer efficiently with our elaborate anti-ETM
loop (principle (3)). It also conducts two protection strategies
including PID replacement and PIE+STRIP+ASLR. Then Armor
instruments the loop functions before the implicit-semantics
points (and the user-specific points) in the program to hide
crucial runtime information. The loop function also contains
the anti-ETM loop (principle (1)), which is designed according
to the features of ETM for efficiently generating trace data.
The function utilizes a context-based mechanism to calculate
the times of loops for triggering the overflow and avoiding
heavy overhead.
Then we conduct comprehensive experiments to evaluate

Armor. Compared to OLLVM [1], a typical code obfuscation
tool, Armor introduces 77.31% lower overhead on SPEC2006
and is more effective in hiding the runtime information under
ETM on 16 real-world applications. To prove the practicabil-
ity of Armor, we employ it in resisting cryptographic attacks
and impeding hardware-assisted fuzzing. Using ETM, we
demonstrate an attack to extract the RSA private keys from
a TA running GnuPG 1.4.13 in the Secure world. Compared
to some side-channel attacks [45], attackers only need to run
the program once to capture all the bits of a 2,048-bit key by
ETM, which proves the security threats brought by hardware
tracing. Fortunately, Armor can effectively resist this attack.
We also utilize ARMored-CoreSight [8] to evaluate Armor
in anti-fuzzing. The results shows that Armor can reduce
the efficiency of fuzzer significantly. Finally, we discuss
the limitations of Armor and compare Armor with other
software protection techniques.
In summary, this paper makes the following contributions.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024 3

• We propose anti-hardware tracing technique. Unlike exist-
ing protection techniques which are useless under trans-
parent hardware tracing, our technique utilizes the trace
buffer overflow to effectively bypass the transparency and
protect the runtime information.

• We analyse the buffer overflow and point out three princi-
ples in efficient anti-hardware tracing: Numerous branches
in the program to generate trace data, high-speed execution
of the program to accelerate the generation, and high-water
mark of trace buffer for efficient triggering overflow.

• We design and implement a framework Armor on ARM
Juno R2. Armor instruments the protection and loop
functions to meet the three principles for triggering the
overflow before the implicit-semantics points.

• We conduct comprehensive evaluations on Armor. Armor
is effective in concealing the runtime information by hiding
54.51% basic blocks and 50.91% addresses of indirect
branches on 16 real-world applications.

• We conduct a cross-world attack on the RSA keys of a TA
by ETM and resist this attack by Armor. Armor reduces
84.5% bits of keys stolen by attackers. Armor also impedes
the hardware-assisted fuzzer by reducing 47.99% branches.

• We open the source of Armor at https://github.com/
MoonLight-SteinsGate/Armor.
The remainder of this paper is structured as follows. In

Section II, we introduce the background of the hardware
tracing technique and illustrate our threat model. In Section
III, we build a model of trace buffer overflow and conduct
some experiments to prove that. In Section IV, we present
the design of Armor. In Section V, we present experimental
results, including a cryptographic attack based on ETM
and the corresponding protection of Armor. In Section VI,
we take some discussion about Armor and anti-hardware
tracing. We present related work and conclude in Sections
VII and VIII, respectively.

II. Background and Threat Model
A. Hardware Tracing Technique

Some runtime
information is not

recorded

ETM

Internal Trace Buffer(ETF)

CPU0

 System Memory

Trace buffer overflow

ETM

CPUn
…

Trace Link

Trace Packet
Trace Packet

Decoder

0x405758:
 bl 0x40f068
 …
 tst w0, #0xff
 b.eq 0x40582c
 ldr x1, [x19, #8]
 mov x0, x19
 ldr x1, [x1, #424]
 blr x1
 …
 ret
 …
0x40f86c:
 mvn x0, x0
 add x1, x1, x2
 and x3
 cmp x1, x2

Binary

Addr: 0x40f86c

Atom:N

…

Atom:E

Addr: 0x40f50c
Atom:E
…

Atom:E
…

Addr: 0x405758

Implicit-semantics point

Trace Data

Trace Buffer

Overflow

…
Addr: 0x40f50c

Atom:E
…

Atom:E
…

Addr: 0x405758

Addr: 0x40f878

If the trace buffer overflow
occurs before the conditional

branch.

When the trace unit recovers from the
overflow, it generates an Overflow packet and

records the address of current instruction.

ETR

Fig. 1: The typical architecture of ARM CoreSight.
For capturing the executed instructions inside the pro-

cessor, modern multi-core processor architecture and system
have been integrated with hardware tracing modules, such
as Intel PT [2] and ARM CoreSight [3]. Fig. 1 shows a
typical architecture of ARM CoreSight implemented in ARM
Juno R2 [46]. Generally, the trace units (i.e., ETM in ARM

CoreSight) capture the runtime information by monitoring
the corresponding cores and compress the trace data into
trace packets to reduce the amount of trace data. Then, the
units output the packets to an internal trace buffer, such as
Embedded Trace FIFO (ETF), for addressing the significant
bandwidth problem. The packets are fed into the Embedded

Trace Router (ETR), which routes the trace data to the user-
configurable buffer in system memory [47]. Finally, the users
decode the trace packets to retrieve the accurate control flow
with the help of additional binary disassembly [4].
Particularly, there are three crucial points in modern

hardware tracing techniques: 1) Branch tracing. State-of-
the-art techniques such as ETMv4 and Intel PT usually
support branch tracing, which records the instructions that
change the control flow of programs, including branches and
exceptions [4]. Taking the binary in Fig. 1 as an example,
starting from an entry (0x405758), by recording whether the
conditional branch is taken or not taken (e.g., Atom packets
in ETM) and the destinations of branches (e.g., Address
packets in ETM), the analyzer can accurately recover the
control flow with the disassembly code. Since the addresses
of direct branches can be determined in the instructions (e.g.,
instruction at 0x405758), popular techniques usually record
the destinations of indirect branches. Therefore, we define
the conditional branches and indirect branches as implicit-

semantics points, where the absence of tracing information
in these points may lead to the unrecoverable control flow.
For example, in Fig. 1, an overflow occurs before executing a
conditional branch. When ETM recovers from this overflow,
the program has executed several instructions and is execut-
ing the instruction at 0x40f878. As a result, information on
the executed branches during the overflow is absent.
2) Trace buffer overflow. Existing techniques support

capturing and transporting trace packets to the memory of
host devices. However, due to the powerful processors in
modern chips, trace units can generate data in the range of
hundreds to thousands of MB/s (depending on trace filters,
trace packets, and packet generation frequency) [4], which
may exceed the bandwidth of memory writing. Therefore,
existing techniques usually utilize the on-chip internal buffer
to temporarily store trace data with low latency, which can
flatten the bursts for bandwidth requirements in memory.
However, limited by the capacity of this dedicated trace buffer
(e.g., 64 KB of ETF in ARM Juno R2), there would be an
overflow in the buffer if trace units generate lots of trace
data in a short time, causing the loss of trace data. Therefore,
we consider protecting the programs from hardware tracing
by frequently triggering the trace buffer overflow. It is worth
noting that this buffer refers to the internal trace buffer, of
which the size is fixed, rather than the buffer configured by
the user in the system memory to fetch the trace data.
3) Kernel-privilege user. Generally, hardware tracing

modules can be employed by configuring their registers,
which requires at least kernel privileges (or root privileges on
specific Linux systems). Taking ARMv8-A architecture as an
example, a core has four exception levels (EL0-EL3), which
are used by applications, kernels, hypervisors, and secure
monitor, respectively [48]. In addition, ARM introduces two

https://github.com/MoonLight-SteinsGate/Armor
https://github.com/MoonLight-SteinsGate/Armor

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024 4

CPU states by ARM TrustZone: the Normal world (also
named Non-secure world) and the Secure world [48]. No
matter whether a non-root process is running in Secure EL0
or Normal EL0, it cannot access the registers of CoreSight.

B. Embedded Trace Macrocell

ETM is a standard trace unit in ARM CoreSight. The trace
elements generated by ETM can be classified into several
categories, such as synchronization and basic program flow.
The basic program flow elements are related to control
flow, including Atom, Exception, Address, and Context. The
Address element denotes the destination of a branch, and the
Atom element represents whether a branch is taken or not
taken (E is taken and N is not taken). Table I lists the trace
packets related to control flow.

TABLE I: Trace elements and trace packets of ETM.

Trace Packet Trace Element Size(bytes)

Exact Match Address 1 Address 1
Short Address 1 Address 2,3
Long Address 1 Address 5,9

Address with Context 1 Address 6-18
Exception 1 Address 4-22

Atom Format 1 1 Atom 1
Atom Format 2 2 Atom 1
Atom Format 3 3 Atom 1
Atom Format 4 4 Atom 1
Atom Format 5 5 Atom 1
Atom Format 6 4-24 Atom 1

Specifically, ETM takes some compression techniques to
generate the packets related to Address and Atom [49]. First,
it stores up to three recent addresses in a queue, denoted as
address reg[i] (i is 0, 1, 2). Each time a new Address element
is generated, ETM updates the three addresses in the queue.
Before generating an Address packet, ETM compares the new
address value with the three addresses in the queue. If the
new address exactly matches any of them, ETM will output
an Exact Match Address packet instead of other Address
packets, which costs only one byte. Moreover, the Short
Address and Long Address packets only contain the least
significant bits that have changed from the most recently
traced address stored in address reg[0]. If the number of
changed bits is no more than 17, ETM only generates a
Short Address packet, which costs no more than three bytes.
Furthermore, ETM always uses one byte to generate the
Atom packets, which can mostly denote 24 Atom elements.
By these techniques, ETM minimizes the amount of trace
data to avoid trace buffer overflow as much as possible.

According to the manual of ETM [49], ETM also sup-
ports some features, including context ID tracing, global
timestamping, and branch broadcasting. Generally, ETM
or Intel PT only records the destination addresses of indirect
branches in the default mode. Unlike PT, ETM can record the
destinations of direct branches under the branch broadcasting
mode [49]. Furthermore, users can configure the context ID
comparators and address range comparators of ETM to trace
the assigned process within the specified address range [49].
Notably, in addition to instruction tracing, ETM also supports

data tracing. However, this mode may generate an excessive
amount of trace data. Many SoCs, such as ARM Juno R2, do
not implement this function.
Particularly, there are four authentication signals in ARM

CoreSight to manage the debugging or tracing privileges [49].
Among them, the signals NIDEN and SPNIDEN determine
whether ETM can non-invasively trace the code in the
Normal world and Secure world, respectively. Generally, the
signal NIDEN is enabled by default to support users to trace
and analyse their applications in the Normal world. However,
the signal SPNIDEN may be ignored and enabled by manu-
facturers on many devices, leaving enough wiggle room for
an attacker to launch attacks to the Secure world [30].

C. Threat Model and Assumptions

In this paper, we focus on protecting programs from
malicious attackers who abuse the ETM. We trust the secure
monitor in EL3, hypervisors in EL2, and the components
in Secure world (e.g., TA and TEE OS). We also trust the
hardware provided by the manufacturer. We consider the
adversaries as the kernel-privilege attackers in the Normal
world (i.e., Normal EL1). They have full control of the
untrusted OS. Their goal is to leak the secret data of secure
software, such as the control-flow information of a cryptog-
raphy library. The software is a TA running in Secure EL0 or
a user-privilege (i.e., Normal EL0) secure program running in
the Normal world isolated environments (e.g., Shelter [29]).
Under these secure environments, even the kernel-privilege
attackers cannot directly access the memory of the protected
process [27], [29]. However, they can maliciously utilize the
ARM CoreSight to conduct malicious attacks. We also assume
that the signals SPNIDEN and NIDEN in ETM are enabled
by the SoC manufacturers. In fact, according to the inves-
tigations in previous works [30], [33], many devices adhere
to this assumption (i.e., enabling these signals). Therefore,
the sophisticated attacker can follow the nailgun attack [30]
to mount a kernel module and employ ETM to trace the
protected software non-invasively.
Furthermore, this paper focuses on mitigating the attacks

based on hardware tracing. We do not consider physical at-
tacks (e.g., bus snooping attacks [50]) and invasive debugging
(e.g., utilizing JTAG). Side channel attacks are also out of our
scope in this paper [51]–[55]. Particularly, for the interrupt-
based attacks [53]–[55], we assume that the interrupts raised
by kernel-privilege attackers (i.e., non-secure interrupts) to
the core running the TA are blocked by the interrupt con-
troller, which is feasible by conducting specific configuration
in the Secure world [56]–[58]. For example, according to the
manual of Trusted Firmware-A (TF-A) [58], we can block
the non-secure interrupts by configuring the exception mask
bits I and F in the PSTATE register of a core when entering
the Secure world. This can make the processes in the Secure
world monopolize the core, and even the kernel-privilege
attackers cannot modify the register or interrupt the TA. We
will discuss more details about the interrupt-based attacks
and how to mask the non-secure interrupts in Section VI.
Moreover, we argue that the anti-hardware tracing tech-

nique should not prevent legitimate users from using ETM

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024 5

to trace and analyse applications in the Normal world.
Particularly, since the protected software is running as an
EL0 process in the Secure world or isolated environment,
it cannot perceive or disable the ETM through reading or
writing the registers of CoreSight, which is required for at
least EL1 privileges. Moreover, enforcing the access control to
the tracing memory and preventing malicious programs from
directly accessing it may be unfeasible as it is challenging to
determine whether the access is from the attacker. Further-
more, the above countermeasures could potentially impact
the normal usage of ETM by legitimate users and can still
be bypassed by sophisticated attackers. For example, if the
TEE OS or isolated environments disabled the ETM when the
protected software traps in EL1-EL3, attackers can bypass this
by resetting and restarting ETM.

III. Escaping from Hardware Tracing

A. Workflow of Trace Buffer

We first build a model to analyse the critical conditions
of trace buffer overflow. For the program P running on one
core C with the configurations proposed in Section II-C, the
amount of trace data generated by ETM in time t can be
denoted as G(t, P, C) (briefly as G(t)). For the trace buffer,
we represent its size as Lbuffer and its constant bandwidth
of exporting trace streams to the memory as V . The amount
of trace data in trace buffer in time t is D(t), deduced as:

D(t) =

∫ t

0

G(s)ds− V t (1)

Therefore, the critical conditions of the first trace buffer
overflow occurring in time t1 can be denoted as:

D(t1) =

∫ t1

0

G(s)ds− V t1 = Lbuffer (2)

When the trace buffer overflow occurs, the trace units will
hang up until the trace buffer drains some trace data and
recovers from the overflow. It does not mean that all of the
trace data in the buffer will be drained, where we denote the
amount of drained data as ∆n. We utilize t2 to represent the
time that trace units recover from the previous overflow in
time t1 and ∆t to denote this time interval:

∆t = t2 − t1,∆n ≤ V∆t ≤ Lbuffer (3)

Based on Equation (2) and (3), D(t2) can be deduced as:

D(t2) =

∫ t1

0

G(s)ds− V t1 −∆n = Lbuffer −∆n (4)

From time t2, the trace units recover and start to trace the
program until the trace buffer overflow occurs again in time
t3. We can calculate D(t3) as:

D(t3) = D(t2) +

∫ t3

t2

G(s)ds− V (t3 − t2) = Lbuffer (5)

Based on Equation (4) and (5), we can further deduce that:∫ t3

t2

(G(s)−V)ds = ∆n ≤ Lbuffer =

∫ t1

0

(G(s)−V)ds (6)

Assuming that the trace units recover from the k overflow
in time t2k and the (k+1) overflow occurs in time t2k+1, we
can extend Equation (6) as:∫ t2k+1

t2k

(G(s)− V)ds = ∆n ≤ Lbuffer =

∫ t1

0

(G(s)− V)ds

(7)
From starting tracing to time t2k+1, the trace buffer overflow
occurs (k + 1) times. Then we can calculate the percentage
of the time that trace units hang up (denoted as p) as:

p =
k∆t

t2k+1
=

k∆t

t2k+1 − t2k + t2k − t2k−1 + · · ·+ (t2 − t1) + t1

=
k∆t

k∑
i=1

(t2i+1 − t2i) + t1 + k∆t

(8)
From Equation (7) and (8), considering that V , ∆n, and

∆t are constant, the larger G(t) is, the closer t2k+1 and t2k
are to. Then the p are closer to 100%, meaning more trace
data loss. In contrast, if the execution speed of instructions
in the program is too slow or the program contains too few
branch instructions, the bandwidth of trace data generated
by trace units will be less than the bandwidth of trace buffer
(i.e., G(t) < V), never causing the overflow.
Moreover, from Equation (7), since the drained trace data

during the overflow is no more than the size of the buffer, the
time interval to trigger the first trace buffer overflow is no
shorter than that of subsequent triggering. Particularly, we
can presume G(t) is close to a constant Vg . Then the model
of trace buffer can be described as the curve in Fig. 2.

Amount of trace data in trace buffer

Time

Lbuffer

t1 t2 t30 t4 t5

Lbuffer − Δn

Trace buffer overflow

Recover from overflow

Fig. 2: The model of trace buffer overflow.

B. Trace Buffer Overflow on ARM Juno R2

We apply our model to measure the three crucial parame-
ters on ARM Juno R2, including the bandwidth V , the recover
time ∆t, and the amount of drained data ∆n, which are the
basis of implementing Armor on Juno R2.
We utilize ETM to trace a binary containing a simple loop

for 1, 000, 000 times by enabling the branch broadcasting on
ARM Juno R2, which is listed in Fig. 3. From Fig. 3, almost
in each loop, ETM generates 2 bytes trace data: an Atom
Format 1 packet with the Atom element E and an Exact
Match Address packet with the Address element 0x40062C.
Moreover, since the number of loops is large enough, we can
consider the execution time of each loop to be constant. The
workflow of ETF will be approximate to the model in Fig. 2.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024 6

0x40061c: mov w1, wzr
// w1 = 0
0x400620: mov w0, #0x423f
0x400624: movk w0, #0xf, lsl #16
// w0 = 1000000
0x400628: b 400630
0x40062c: add w1, w1, #0x1
// w1++
0x400630: cmp w1, w0
0x400634: b.le 40062c
// if(w1 <= w0)
0x400638: …

0x40061c

0x400628

0x400630

0x400634

0x40062c

0x400638

for(i = 0; i < 1000000; i++); E
E

Long Address: 0x400630 (9 bytes)
Short Address: 0x40062c (2 bytes)

E Exact Match Address: 0x40062c (1 byte)

…

E

N

Exact Match Address: 0x40062c (1 byte)
Overflow: overflow (2 bytes)

Address with Context: 0x40062c (14 bytes)
E Exact Match Address: 0x40062c (1 byte)

…
E Exact Match Address: 0x40062c (1 byte)

Atom Format 1Branch

Trace packets generated by ETM
with enabling branch broadcasting

Control flowCode snippet of a simple loop

E

…

Fig. 3: The code snippet of the loop and the generated packets of ETM.

For measuring the parameters, we record the execution
time of 1, 000, 000 loops and the amount of trace data,
denoted as T and M , respectively. We can approximate the
execution time of each loop as T

1000000 . We also count the
number of loops and overflows traced by ETM, represented
as Nloop and Now , respectively. Then the number of loops
executed when the trace units hang up can be calculated as
1000000−Nloop

Now
. We can utilize it to measure the recovery time

∆t. We count the number of loops and the amount of trace
data between two consecutive overflows occurring in t2k−1

and t2k+1, denoted as Nk and Dk , respectively. Based on our
model, we calculate V , ∆t, and ∆n as:

V ≈ M
T

∆t ≈ 1000000−Nloop

Now
∗ T

1000000

∆n ≈
∑Now

k=1 (Dk−Nk∗ T
1000000∗V)

Now

(9)

Then we execute the binary on two different cores. One is
Cortex-A72 with 1.2 GHz and 2 MB of L2 cache, while the
other is Cortex-A53 with 0.95 GHz and 1 MB of L2 cache.
We repeat the experiments for 1000 times to reduce the
randomness introduced by environments, decode the trace
data by ptm2human [59], and analyse the trace packets.

Table II shows the average results. From Table II, the
bandwidth of ETF V is about 503.8 MB/s. It takes ETF about
172.4 us to recover from one overflow by draining about 83
bytes of trace data, during which the program can escape
from hardware tracing. Furthermore, ETM traces 330, 278

TABLE II: The average results of 1, 000 trails on Cortex-A72 and A53.

Core T (ns) M (B) Nloop Now Nk Dk(B) V (MB/s)∆n(B)∆T (ns)

A72 1,680,948 894,274 330,278 6,448 43.5 122.9 507.4 84.1 174.7
A53 2,126,923 1,115,509 408,353 7,395 46.7 133.5 500.2 81.4 170.1

loops on Cortex-A72, less than those on Cortex-A53 (about
408, 353). The reason is that the core with higher perfor-
mance executes more instructions during the recovery time,
leading to more trace data loss. Therefore, when executing
the same instructions, the higher execution speed may bring
more protection to the program against hardware tracing.

In summary, by building the model and conducting exper-
iments on trace buffer overflow, we prove that it is viable
to hide the runtime information and achieve anti-hardware
tracing by triggering lots of overflows, where the following
two principles should be satisfied: 1) there are numerous

branches, particularly indirect branches, in the programs. 2)

programs are not allowed to run at a low speed (e.g., under

debugging or on a processor with poor performance). And an
additional principle to efficiently produce overflows is also
proposed: 3) running the program in the trace buffer with a

high-water mark is easier to trigger the overflow.

IV. Design and Implementation

A. Overview

PID replacement

Armor

int main()
{
 int a = 0;
 …

exec

Protection function

int main()
{
 int a = 0;
 …

int main()
{
 int a = 0;
 …

int main()
{
 int a = 0;
 …

.c

main:
.LFB2:
…

main:
.LFB2:
…

main:
.LFB2:
…

main:
.LFB2:
…

.s

 main:
 .LFB2:
 …
 blr x2
 …
 bne .L4
 .L2:
 …
 ret

main:
.LFB2:
…

main:
.LFB2:
…

main:
.LFB2:
…

main:
.LFB2:
…

.s

Source
code

Assembly
code

Assembly code
instrumented by

Armor

Protected
binary

Loop function

In the entry of main function

Before implicit-semantics
points and user-specific

instructions

Detecting environment

Filling trace buffer

PIE+STRIP+ASLR

Anti-ETM loop

Context-based calculation

Mechanisms in
Armor

Principle (1)

Principle (2)Avoid context ID tracing

Reduce overhead

Principle (3)

Ensure that ASLR is enabled

Static analysis

Fig. 4: Overview of Armor.

Inspired by our model of trace buffer overflow and the
experiments on ARM Juno R2, we design and implement
our anti-hardware tracing framework, named Armor. Fig.
4 shows the overview of Armor. For conducting some pro-
tection strategies and efficiently triggering lots of overflows,
Armor analyses the assembly code and instruments two cru-
cial functions in the program to satisfy the three principles,
including protection function and loop function.
For satisfying principles (2) and (3), Armor inserts the

protection functions in the entry of main function, where the
trace buffer may be empty. The protection function executes
some loops and measures the execution speed of loops to
detect environment, decides whether to stop the process, and
executes the anti-ETM loop to quickly fill trace buffer and
trigger the overflow. Moreover, since ETM supports tracing
a specific process within an address range, we propose
two countermeasures to thwart attackers from exploiting
these features: 1) PID replacement. This function changes
the PID by forking a child process that replaces the parent
process, which can hide runtime information under context
ID tracing. 2) PIE+STRIP+ASLR. Armor compiles the program
as position-independent executable (PIE) code and strips the
symbolic information. Then the protection function checks
the status of Address Space Layout Randomization (ASLR)
and ensures that the program runs only when ASLR is en-
abled. This brings challenges for attackers to pre-specify the
traced address range and analyse the runtime information.
Since the protection function has filled the trace buffer in a

high-water mark, according to principle (3), the program only
needs to execute a few branches to trigger the subsequent
overflow. For protecting some crucial control-flow informa-
tion, Armor inserts the callers of loop functions before the
implicit-semantics points and some user-specific instructions
to trigger the overflow and stall the ETM when executing
these branches. The loop function contains the anti-ETM loop,
which is designed according to the mechanism of ETM and
can generate significantly more trace data than the common
loops, satisfying the principle (1). Moreover, the times of

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024 7

loops are calculated by the context-based calculation mech-
anism to reduce the overhead introduced by loop functions.

Finally, the software compiled by Armor can hide some
runtime information and withstand the attackers who employ
ARM CoreSight to trace it. The details of these two functions
in Armor are introduced as follows.

B. Protection Function

Detecting environment. Algorithm 1 shows the logic of
the protection function. Specifically, the protection function
executes the anti-ETM loop, which will be introduced in
Section IV-C, for MEASURE LOOP times and measures the
execution time use time (Line 2-4) by reading the cntvct el0
and cntfrq el0 registers. Then it calculates the amount of
trace data outputed by ETF in one loop by utilizing the
bandwidth of ETF (V) (Line 5), denoted as consumed bytes.
Armor detects the environment and determines whether
the program is running at a high speed by comparing the
consumed bytes with the pre-configured threshold CON-
SUME MAX. If the trace data consumed by ETF is more
than CONSUME MAX in one loop, which means that the
program spends much time on executing the loop. The
protection function will terminate the program (Line 6-8) to
prevent the attackers who plan to avoid trace buffer overflow
by slowing down the program (e.g., running the program in
a poor-performance core).

Algorithm 1 Protection Function
1: pid replacement()
2: cur time = get cur time()
3: anti ETM loop(MEASURE LOOP)
4: use time = get cur time() - cur time
5: consumed bytes = use time * V / MEASURE LOOP
6: if consumed bytes > CONSUME MAX then

7: exit(-123)
8: end if

9: aslr check()
10: fill speed = LOOP BYTES - consumed bytes
11: loop times = BUFFER LENGTH / fill speed
12: anti ETM loop(loop times)
13: last time = get cur time()
Output: fill speed, last time

Filling trace buffer. If the function passes the check, this
denotes that the execution speed of the program can satisfy
principle (2) to achieve anti-hardware tracing. According to
principle (3), it is easier to trigger overflows when the trace
buffer is at a high-water mark than that is empty. Therefore,
the protection function will execute enough indirect branches
to quickly fill the empty trace buffer for triggering overflows.
Specifically, the function accurately calculates the speed of
the anti-ETM loop to fill the buffer (i.e., fill speed) based on
the amount of trace data generated by ETM and exported by
ETF in one loop (i.e., LOOP BYTES and consumed bytes).
Then it calculates the minimal times loop times of the anti-
ETM loop to trigger the overflow from an empty buffer by
utilizing the size of the buffer and this speed (Line 10-11),
and executes the loops (Line 12). Finally, the function saves
the speed of filling trace buffer and current timestamp in a
global array to calculate the amount of outputted trace data
in next loop function.

PID replacement. In addition, to withstand the attackers
who configure the context ID to accurately trace the program,
we add the aovid pid trace() function to create a child
process for replacing the parent process (Line 14). This PID
replacement mechanism can hide almost all control flow
under the context ID tracing of ETM. It should be noted that
this strategy may not be applicable to some TAs as many TEE
OSs may not support the fork mechanism. However, this may
be achieved by enhancing the TEE OSs further.
PIE+STRIP+ASLR. To conduct this strategy, the protec-

tion function also checks the status of ASLR, such as reading
/proc/sys/kernel/randomize va space (Line 9) in Linux. The
TA may require some specific handling. If the ASLR is
disabled, it will terminate the program. Moreover, to resist
the attackers who want to detect and disarm this protection
strategy by reverse engineering, we take some tricks in this
strategy, such as transferring the string /proc/sys/kernel/ran-
domize va space as implicit data flows.
Instrumentation position. We instrument the protec-

tion function in the entry of main function, which brings
two benefits. First, if the environment is unable to support
anti-hardware tracing, protection function inserted in the
beginning of main function can terminate the program
immediately, preventing executing the functional code to
protect almost all of the useful runtime information. The PID
replacement can also derive benefits from this. Second, the
trace buffer may be empty when the program runs in this
position, where the protection function can fill the buffer to
a high-water mark to satisfy principle (3).
By the protection function, Armor conducts several pro-

tection strategies, ensures the program runs at a high speed,
and guarantees the buffer in a high-water mark (i.e., prin-
ciples (2) and (3)), providing the environment for efficiently
triggering overflow in loop functions.

C. Loop Function

To generate enough trace data for triggering overflows
and avoid the heavy overhead, we design the context-based
calculation mechanism to calculate the loop times of the anti-
ETM loop in the loop function.
Context-based calculation. Algorithm 2 shows the logic

of the loop function (i.e., armor loop in Fig. 5). Specifically,
based on the timestamp, bandwidth of ETF, and amount of
trace data drained in one overflow, the loop function firstly
calculates the amount of trace data outputted by ETF (i.e.,
output bytes) from the last anti-ETM loop to this (Line
1-2). Then it estimates the times of loops to trigger the
overflow according to the outputted trace data and speed
of filling trace buffer, and executes the anti-ETM loop (Line
3-4). Finally, the function updates the timestamp (Line 5).
Anti-ETM loop. For efficiently generating the trace data

in one loop, we elaborately design the anti-ETM loop based
on the mechanism of ETM, which is shown in Fig. 5. In
detail, we utilize three general registers to store the addresses
of three bouncer functions before entering the loop, which
contains only one ret instruction. During each loop, the
program indirectly calls the three functions and returns from

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024 8

Algorithm 2 Loop Function
Input: fill speed, last time
1: cur time = get cur time()
2: output bytes = MIN((cur time - last time) * V + DRAINED BYTES,

BUFFER LENGTH)
3: loop times = output bytes / fill speed
4: anti ETM loop(loop times)
5: last time = get cur time()

Output: fill speed, last time

them, executing six indirect branches. Notably, we increase
the offset between the indirect call instructions in the loop
function and the definition of bouncer functions to more
than 32 MB for generating the Long Address packet in each
branch, as shown in the right part of Fig. 5. Besides, to avoid
ETM producing the Exact Match Address packet, we insert
three bouncer functions to ensure that the new address is not
in the queue of ETM. By this design, ETM generates at least
36 bytes of data in one loop, while the protected program
only executes nine instructions, which ensures generating
lots of trace data in acceptable overhead.

adrp x9, x9, save_reg
add x9, x9, :lo12: save_reg
str x30, [x9]
bl armor_loop
ldr x30, [x9]

…

br x1
…

b.eq 15d8
cmp x3, 1
b.eq 15c4
cmp x3, 2
b.eq 15b8
…

blr x1
…

ret

bouncer_func_1:
ret // ② return to blr x3
nop

bouncer_func_2:
ret // ④ return to blr x4
nop

bouncer_func_3:
ret // ⑥ return to add w0, w0, 1

Long Address (5 bytes)
Long Address (5 bytes)E
Long Address (5 bytes)
Long Address (5 bytes)

E
E

Long Address (5 bytes)
Long Address (5 bytes)

E

NE

6
5
4
3
2
1 blr x2

blr x3
ret

ret
blr x4

ret E

b.hi

Origin program
Anti-ETM loop in function armor_loop

Definition of bouncer_func

The offset is more than 32MB to
generate Long Address packets.

Packets generated by ETM in one anti-ETM loop

Call armor_loop with
saving x30

// saving registers to save_reg
stp x0, x1, [x9, 24]
stp x2, x3, [x9, 40]
stp x4, x5, [x9, 56]
mrs x0, nzcv
stp x30, x0, [x9, 8]
…

// store the addresses of bouncer_func
adrp x2, x2, bouncer_func_1
add x2, x2, :lo12: bouncer_func_1
…

.L6_armor_loop:
blr x2 // ① call bouncer_func_1
blr x3 // ③ call bouncer_func_2
blr x4 // ⑤ call bouncer_func_3
add w0, w0, 1
cmp x1, x0, uxtw
b.hi .L6_armor_loop
…

36 bytes of trace data

Call armor_loop

Call armor_loop

Directly call

Tail branch

bl armor_loop
Directly call armor_loop

b armor_loop
Tail branch to armor_loop

Code inserted by Armor

More than two conditional
and forward branches

Fig. 5: The details of loop functions.

Instrumentation position. By producing overflows in
the loop function, Armor provides the program with precious
intervals to escape from hardware tracing, which is about
172us in ARM Juno R2. To utilize the intervals, we call the
loop function before: 1) The implicit-semantics points, in-
cluding indirect branches and conditional branches. 2) Some
user-specific instructions. However, some instrumentations
may incur heavy overhead (e.g., calling loop function in a
recursive function). For reducing the overhead, Armor con-
ducts a simple but effective static analysis in assembly code to
determine the instrumented points. Specifically, Armor does
not instrument the loop functions in the recursive functions.
In other functions, Armor inserts the loop functions before
all of the indirect branches. However, there are usually more
conditional branches than indirect branches in programs and
many conditional branches are backward branches, which
may generate loops and introduce heavy overhead if we

instrument the loop functions before them. Hence, we only
instrument the conditional branches which satisfy the fol-
lowing conditions: 1) This instruction is followed by more
than two consecutive conditional branches. 2) There are no
more than two instructions between the adjacent conditional
branches. 3) This instruction and its followed conditional
branches are not backward branches. The left part of Fig. 5
has shown some examples of instrumentation. Benefited from
this, when the program executes these instructions, ETM may
be in the stalling due to the overflow of ETF caused by the
loop function, which protects the crucial control flow.W
By inserting the loop functions (i.e., principle (1)), Armor

executes the anti-ETM loops (i.e., principle (1)) based on
a context-based calculation mechanism, which can trigger
overflow frequently with introducing little overhead.

D. Implementation

We implement Armor as a compiler-wrapper of gcc. For
some parameters utilized in the protection and loop function,
we define them according to the corresponding parameters
on ARM Juno R2, listed in Table III.
TABLE III: Parameters utilized in Armor.

Parameters Value Description

MEASURE LOOP 4,096 Number of loops to measure the
execution speed

V 512 MB/s Bandwidth of ETF
CONSUME MAX 26 bytes Threshold of consumed trace data in

one anti-ETM loop
LOOP BYTES 36 bytes Trace data generated by ETM in one

anti-ETM loop
BUFFER LENGTH 64 KB Size of buffer in ETF
DRAINED BYTES 83 bytes Trace data drained in one overflow

To maintain the semantics of the program unchanged after
our instrumentation, we define a global array save reg to
save and restore these registers which may be changed in
protection function and loop function (e.g., x30, x0, and nzcv).
We reserves one general register x9 by using the -ffixed-
x9 argument in gcc to store or load the address of this
array. The assembly code to call the loop function inserted
by Armor is shown in the left part of Fig. 5 (calling the
protection function is similar). We save the value of x30 in
save reg[0] and reload this value after returning from our
function, keeping it unchanged after our instrumentation.
Particularly, in the protection and loop function, we employ
the array to maintain the context by storing the values of
used registers at the beginning of the function and loading
these values at the end, which is different from the traditional
mode that utilizes stack frames to save the context. This
can prevent Armor from destroying the origin data in the
stack. Moreover, before blr instruction, we directly call the
loop function without saving x30. For the ret instruction, we
transfer it as a tail branch to the loop function. These tricks
can lightly reduce the size of code.

V. Evaluation
Research questions. We conduct comprehensive evalua-

tions to answer the following research questions:

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024 9

RQ1: How about the overhead introduced by Armor?
RQ2: How about the effectiveness of Armor in hiding the
runtime information of the program under ETM?
RQ3: Can Armor resist some attacks based on ETM?
RQ4: Can Armor impede the hardware-assisted fuzzing?

A. Performance Evaluation

Experimental setup. We employ the widely-used
SPEC2006 test suites, along with training input, to assess the
overhead of Armor. In our design, the overhead of Armor is
attributable to two components: the instrumented protection
function and the loop function. The protection function is
executed only once at the entry point of the main function,
while the loop function is executed multiple times before nu-
merous implicit-semantic points in the program. To explore
the overhead introduced by these functions, we compile all
of the C and C++ benchmarks from the INT2006 and FP2006
with gcc-7.3, Armor-P (only instrumenting the protection
function), and Armor (Armor fails to compile 403.gcc).
Additionally, we also measure the performance overhead of
the state-of-the-art obfuscation technique, OLLVM [1], with
all strategies enabled (-mllvm -sub -mllvm -fla -mllvm -bcf).

Considering the variability of the environment, we re-
peated each test five times. All experiments were performed
on the Taishan server, which is equipped with a 64-core
Kunpeng 920 processor (2.6GHz) and 190GB RAM. The server
was running openEuler-20.03 with Linux kernel version 4.19.

TABLE IV: The runtime overhead of gcc, Armor-P, Armor, and OLLVM
and the number of instrumented loop functions by Armor on SPEC2006.

Program
Execution Time(s) Ins.

Base Armor-P Armor OLLVM Armor

400.perlbench 20.1 20.2(+0.50%) 67.0(+233.33%) 540.0(+2586.57%) 3,562
401.bzip2 40.3 40.5(+0.50%) 51.3(+27.30%) 400.0(+892.56%) 192
429.mcf 14.9 14.9(+0.00%) 15.5(+4.03%) 48.8(+227.52%) 51

445.gobmk 85.9 86.6(+0.81%) 177.0(+106.05%) 1580.0(+1739.35%) 3,814
456.hmmer 34.8 35.1(+0.86%) 42.0(+20.69%) 559.0(+1506.32%) 1,023
458.sjeng 107.0 107.0(+0.00%) 309.0(+188.79%) 1820.0(+1600.93%) 274

462.libquantum 1.02 1.02(+0.00%) 2.71(+165.69%) 22.0(+2056.86%) 155
464.h264ref 64.2 62.8(-2.18%) 264.0(+311.21%) 610.0(+850.16%) 1,429
471.omnetpp 41.8 41.9(+0.24%) 181.0(+333.01%) 400.0(+856.94%) 3,326
473.astar 75.6 76.2(+0.79%) 84.4(+11.64%) 464.0(+513.76%) 157

483.xalancbmk 50.0 50.6(+1.20%) 339.0(+578.00%) 871.0(+1642.00%) 40,029
433.milc 11.7 11.8(+0.85%) 15.5(+32.48%) 34.4(+194.02%) 352
444.namd 12.8 12.8(+0.00%) 14.2(+10.94%) 49.6(+287.50%) 332
447.dealII 21.7 21.7(+0.00%) 55.9(+157.60%) 289.0(+1231.80%) 13,184
450.soplex 4.81 4.82(+0.21%) 7.07(+46.99%) 28.9(+500.83%) 2,310
453.povray 5.34 5.32(-0.37%) 16.5(+208.99%) 53.5(+901.87%) 2,643
470.lbm 25.3 25.3(+0.00%) 25.4(+0.40%) 48.6(+92.09%) 24

482.sphinx3 8.49 8.48(-0.12%) 11.2(+31.92%) 53.0(+524.26%) 648

Mean 21.15 21.19(+0.18%) 42.26(+99.84%) 186.17(+780.31%) 815

Runtime overhead. Table IV lists the runtime overhead of
Armor-P, Armor, and OLLVM. Armor-P introduces negligi-
ble overhead on these benchmarks (about 0.18% on average).
Therefore, the overhead of Armor is mainly brought by the
execution of loop functions. Moreover, due to the varying
number of inserted loop functions in Armor across different
programs, the overhead of Armor varies significantly across
these benchmarks, from 0.4% to 578%. Particularly, Armor
introduces no more than 50% overhead on nine benchmarks.

We count the number of instrumented loop functions in these
benchmarks and list the results in the right column of Table
IV. Generally, the more loop functions are instrumented and
executed, the higher the overhead introduced by Armor.
On some benchmarks (e.g., 429.mcf and 470.lbm), Armor
introduces no more than 10% overhead with instrumenting
few loop functions. Since Armor supports user-specific in-
strumented points, the overhead of Armor will decrease if
the user choose to conduct fewer instrumentation. Compared
to OLLVM, the popular obfuscation technique, the geometric
mean execution time of Armor on the tested benckmarks is
42.26s, 77.31% lower than that of OLLVM (about 186.17s).
RQ1: The overhead introduced by Armor mainly depends

on the number of instrumented and executed loop functions,
which varies significantly across different programs. The
protection function introduces average 0.18% overhead on
SPEC2006, while the overhead of loop function ranges from
0.4% to 578% (averagely 99.84%).

B. Security Evaluation

In this section, we qualitatively analyse the security of
the PID replacement and PIE+STRIP+ASLR strategies and
conduct experiments to evaluate the effectiveness of Armor
in triggering overflows and hiding information.
1) PIE+STRIP+ASLR: In practical, users usually pre-

configure the address range of ETM to reduce the unneces-
sary trace packets. Since recovering the integral control flow
requires matching the trace information with the disassembly
code, we implement the PIE+STRIP+ASLR strategy to impede
attackers in these situations. By forcing the protected binaries
to run under the ASLR, the Address elements generated
by ETM vary in different executions, which brings a great
challenge for attackers to pre-configure the address range.
Though the kernel-privilege attackers can bypass the ASLR
checking when tracing the programs in Normal El0, the
stripped PIE and numerous overflow introduced by Armor
bring great trouble to attackers for recovering control flow.
And the attackers are unable to disable the ASLR imple-
mented by the TEE OS when tracing the TA. Therefore,
we recommend the TEE OS vendor to provide support for
ASLR to reinforce the protection. Fortunately, popular TEE
OSs such as OP-TEE [60] have supported this feature.
2) PID replacement: To accurately trace a process, users

usually employ the context ID tracing. For example, some
hardware-assisted fuzzers (e.g., ARMored-CoreSight [8]) have
taken this way. Our PID replacement strategy can change the
context ID to hide almost all of the runtime information in
these scenarios. To bypass this strategy, attackers may have
to track all processes instead of context ID tracing. This may
introduce some noisy packets generated by other processes
and bring some trouble to attacker in analysing trace data.
3) Effectiveness in triggering overflows: To evaluate the

effectiveness of Armor in leading to trace buffer overflow and
hiding runtime information, we select 16 real-world applica-
tions (listed in Table V) which are different in functionality
and commonly used in the real world or other works [6], [61],
[62]. To get enough inputs, we employ AFL [63] to test these

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024 10

TABLE V: The configurations of the programs and average results of tracing information on the programs compiled by gcc, Armor, and OLLVM.

Program Testcases
Trace Data(bytes) Overflows Basic Block Address

Origin OLLVM Armor Origin OLLVM Armor Origin OLLVM Armor Origin OLLVM Armor

objdump-d @@ 8,795 432,493 2,165,373 3,802,274 151 0 22,969 257,806 6,056,942 138,640 28,777 31,656 20,371
readelf -a @@ 7,312 60,121 128,882 1,225,001 0 0 7,062 18,626 244,111 14,713 4,688 4,898 4,402
nm-new -C @@ 6,189 158,912 486,429 1,069,089 0 0 6,915 79,937 1,081,006 26,630 17,175 20,344 6,063

size @@ 2,003 43,518 114,155 856,187 0 0 5,068 19,250 235,445 11,343 4,717 5,363 2,695
jhead @@ 327 28,971 898,046 478,273 0 0 2,916 16,017 4,013,157 16,165 1,521 1,515 1,509

nasm -f elf -o sample @@ 7,173 626,553 2,748,745 5,501,063 1 0 29,907 397,891 7,015,509 207,264 53,935 78,291 33,832
pdfimages @@ /dev/null 1,653 1,661,008 4,736,564 9,722,451 35 0 63,109 1,077,526 9,743,984 398,437 164,305 213,334 70,313

pdfinfo @@ 1,616 1,567,773 4,460,748 9,048,963 30 0 56,705 1,017,015 9,237,600 393,086 150,527 196,353 67,415
pdftops @@ /dev/null 1,577 1,482,603 4,184,368 8,869,894 15 0 53,209 940,364 8,462,393 402,029 133,504 176,313 66,765

pdffonts @@ 1,591 1,501,648 4,318,143 8,876,360 21 0 54,263 972,692 8,943,804 406,915 137,728 181,891 69,112
tiff2bw @@ /dev/null 2,272 191,721 537,831 902,748 307 0 5,700 67,829 1,106,036 57,479 7,306 9,561 2,948

tiffinfo @@ 3,377 880,111 1,429,451 2,959,830 1,258 0 19,805 137,671 1,929,800 87,983 33,569 34,629 11,591
tiff2pdf @@ /dev/null 2,157 142,396 253,507 765,638 166 0 4,879 22,443 308,262 13,034 5,825 7,211 2,240

xmllint @@ 3,826 266,315 - 3,753,017 0 - 19,684 193,766 - 149,231 20,349 - 16,239
cert-basic @@ 647 189,008 441,381 1,019,749 0 0 6,468 68,232 899,152 26,084 13,588 14,456 6,602
bison @@ 3,192 1,602,684 - 8,535,077 1,619 - 50,279 732,008 - 389,215 113,151 - 55,122

Mean - 677,240 1,921,687 4,211,601 225 0 25,559 376,192 4,234,086 171,140 55,667 69,701 27,326
%-Chg - - +183.75% +521.88% - +0.00% +11249.93% - +1025.51% -54.51% - +25.21% -50.91%

*OLLVM failed to compile the xmllint and bison.

programs on the TaiShan server for 24 hours and collect all
the seeds as the testcases. Then we compile these selected
applications by gcc, OLLVM, and Armor, respectively, and
run them to reproduce these collected testcases on ARM Juno
R2 development board, which runs Linux-5.3 and gcc-9.2.0
with 8 GB RAM on a Cortex-A72 processor cluster (two cores
with 0.6-1.2 GHz CPU frequency) and a Cortex-A53 cluster
(four cores with 0.45-0.95 GHz CPU frequency) [46]. For each
testcase, we utilize one Cortex-A72 core with 1.2 GHz to run
the program and enable the corresponding ETM. We disable
the PID replacement and PIE+STRIP+ASLR strategies in this
and subsequent evaluation to evaluate the effectiveness of
Armor in triggering overflows. Specifically, we use objdump
to analyse the text sections of binary and configure ETM to
accurately trace these sections under the default mode by
assigning the PID of the process. Then we collect the trace
data and decode it with ptm2human [59].

Evaluation metric. We use the size of trace data and
the number of overflows to evaluate the efficiency and
effectiveness of Armor in producing trace data and triggering
overflows. Moreover, we count the executed basic blocks as
well as recorded addresses in the text sections of binaries
to evaluate Armor in hiding control flow. Specifically, since
ETM generates an Atom element in each branch instruction,
which can differentiate the basic blocks, we calculate the
number of executed basic blocks by counting the number of
Atom elements behind an Address element in text sections.
We do not count the meaningless blocks and addresses in the
protection and loop function of Armor. For each binary, we
calculate the arithmetic mean of these metrics.

Results on real-world applications. Table V lists the
detailed results of these applications. In the term of effec-
tiveness in anti-hardware tracing, ETM produces 677, 240,
1, 921, 687, and 4, 211, 601 bytes of trace data on the binaries
compiled by gcc, OLLVM, and Armor, respectively, with
recording 225, 0, and 25, 559 overflows. Compared to gcc,
Armor increases the trace data and overflows for 521.88%
and 11249.93%, respectively, proving that the binaries com-

piled by Armor bring much more workload to ETM than the
original binaries. In contrast, though OLLVM increases the
trace data, it fails in triggering overflows. The reason is that
OLLVM introduces heavy runtime overhead (as shown in our
evaluation on SPEC2006), which slows down the bandwidth
of ETM in generating trace data. Therefore, compared to
Armor, existing code obfuscation techniques may be inef-
ficient in leading to the trace buffer overflow and achieving
anti-hardware tracing.
Benefiting from the numerous overflows, Armor effec-

tively reduces the leaked runtime information. Specifically, on
average, ETM captures 171, 140 valid basic blocks and 27, 326
addresses of indirect branches on the Armor-instrumenting
binaries, while 376, 192 blocks and 55, 667 addresses on
the original binaries. Armor reduces the number of traced
blocks and addresses by 54.51% and 50.91%, proving its
effectiveness in hiding the runtime information. However,
on the programs compiled by OLLVM, ETM captures all
the basic blocks and addresses. Although OLLVM presents
challenges to the analyzer in understanding program seman-
tics, it is not designed for anti-hardware tracing and fails to
conceal the runtime information under ETM. Attackers can
still reconstruct the control flow completely.
Moreover, we deeply analyse the successful rate of trig-

gering overflows in the loop function. On average, the tested
programs call the loop function for 44, 139 times, of which
only 8.84% calls (about 3, 904) do not incur any overflows.
91.16% of the loop function executions is under overflow
or triggering overflow, proving the efficiency of our context-
based mechanism and anti-ETM loop.
RQ2: Armor is effective in hiding the runtime information

with reducing 54.51% basic blocks and 50.91% addresses of
indirect branches on 16 applications.

C. Use Case: Resisting the Cryptographic Attack

The nailgun attack leverages data tracing of ETM to
obtain the memory addresses of the ASE table entries on
NXP i.MX53 Quick Start Board [30]. However, ARM Juno

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024 11

R2 does not support data tracing. Hence, we implement a
cryptographic attack based on ETM to extract the private
key of RSA in GnuPG 1.4.13 via the control-flow information.
Then we employ Armor to resist this attack. Moreover, the
signal SPNIDEN is enabled on the ARM Juno R2 board.
Following the nailgun attack [30], we port GnuPG as a
TA running in TrustZone and conduct the attack from the
Normal world to leak the private key in the Secure world.
Though previous works demonstrated similar attacks based
on the side channel, such as FLUSH+RELOAD [45], we
propose a new perspective from hardware tracing.

Our attack utilizes the defect of square-and-multiply ex-
ponentiation algorithm [64] implemented in GnuPG 1.4.13.
Specifically, RSA [65] randomly selects two prime numbers
p and q and a public exponent e and calculates a private
key d. For optimizing the decryption function, GnuPG 1.4.13
employs CRT-RSA. It splits the private key d into dp and dq ,
which calculated as d mod (p − 1) and d mod (q − 1), re-
spectively. Then it decrypts the message by mp = cdp mod p
and mq = cdq mod q. To accelerate the process of integer
exponentiations, GnuPG implements the square-and-multiply
exponentiation algorithm [64] to scan each bit of the expo-
nent and determine whether to conduct the multiply opera-
tion. In each bit, the algorithm performs the square operation
(i.e., mpih sqr n). If the bit is 1, it will additionally perform
the multiply operation (i.e., mpihelp mul karatsuba case).
Therefore, by tracing the entry addresses of these functions,
we can deduce each bit of the exponent (i.e., dp and dq in
CRT-RSA). As pointed out in [45], it is sufficient to attack
the CRT-RSA with dp and dq .
Attack. Since the ARM Juno R2 has supported the OP-TEE

as the TEE OS, we follow the guidance from OP-TEE to port
the GnuPG 1.4.13 as a TA running on it [66]. Then, we use the
rsa decreypt function in GnuPG to decrypt a pre-encrypted
string with a 2, 048-bit key. We suppose that attackers have
the offsets of the entry points of the square and multiply
functions. As the program directly calls these functions, we
enable the branch broadcasting mode of ETM to trace these
addresses. Moreover, we run the TA on a Cortex-A53 core
to avoid trace buffer overflow. After one trial, we decode the
trace data to analyse the addresses of square and multiply
functions to recover the 1, 024-bit keys dp and dq .

0 250 500 750 1000 1250 1500 1750 2000
Order of bits in private keys

0

1

Re
co

ve
re

d
bi

ts

(a) Bits of private keys in original GnuPG
Square
Square and multiply

0 50 100 150 200 250 300
Order of bits in private keys

0

1

Re
co

ve
re

d
bi

ts

(b) Bits of private keys in GnuPG protected by Armor
Square
Square and multiply

Fig. 6: The bits of private keys recovered in GnuPG without and with the
protection of Armor, respectively.

Fig. 6 (a) shows the bits of private keys recovered from
the trace data on the original program. During this attack,
ETM generates 3, 037 Address elements of the square and
multiply functions, with 2, 044 square and 993 multiply
operations, while avoids to trigger any overflows. Then we
try to recover the keys from the sequence by converting the
square operation to 0 and the square-multiply operation to
1. Finally, we get the 2, 044 bits of the private keys, which
contains the 1, 023 bits of dp and 1, 021 bits of dq . Since
the CRT-RSA filters the zero-bits to the first non-zero bits
in the exponent, we recover all the bits in dp and dq based
on this and compare them with the ground truth. The result
shows that our attack can be carried out from the Normal
world and precisely extract the private keys in a secure
software across processes in one run, bringing significant
threats to users. We also conduct this attack on the powerful
Cortex-A72 core with 1.2GHz to evaluate its efficiency under
the maximum frequency. During the 28, 888 us running
of the rsa decreypt function, ETM generates 2, 022 and
993 Address elements of the square and multiply functions,
respectively, with triggering 2, 755 overflows. Attackers can
also effectively recover 98.7% (2, 022) bits of the keys even
under the maximum CPU frequency.
Protection. Since the attack is based on capturing the

entry addresses of the square and multiply functions, we
add those instructions calling these functions as instrumented
points in addition to the default instrumentation positions,
recompile the TA by Armor, and reconduct the attack. Due
to the detection environment mechanism in Armor, the
program is only allowed to be executed on the Cortex-
A72 core with the 1.2GHz. Fig. 6 (b) shows result of the
protected TA. Under our protection, ETM triggers 115, 506
overflows and only traces 532 Address elements of these
two functions, with 318 square and 214 multiply functions.
And the rsa decreypt function runs for 39, 511us, where
Armor introduces 36.77% runtime overhead compared to
the attacks with the same configuration. Then we can only
recover 318 bits (about 15.5%) from the sequence, which
poses a significant challenge for attackers to recover the keys
from these bits. The results show that Armor can effectively
resist this attack and protecting some crucial information.
RQ3: Attackers can utilize ETM to obtain the entire 2048-

bit key of a secure software in one run. Armor can protect
84.5% bits of keys with 36.77% runtime overhead.

D. Use Case: Anti-fuzzing

Experimental setup. To evaluate Armor in impeding
the hardware-assisted fuzzing. we port ARMored-CoreSight
(Edge Cov.) [8], a fuzzer based on ARM CoreSight, in AFL
on our platform as AFL-CoreSight. Due to the limitation of
computational resources, we only test the first two programs
in Table V. We compile them with gcc and Armor, test them
by AFL-CoreSight for 24 hours with the initial seed provided
by AFL in one Cortex-A72 1.2 GHz core, and repeat five times
to reduce the randomness introduced by fuzzing. We follow
the configuration of ETM in Section V-B.
Metrics. We do not consider the crashes, as it is difficult

for the fuzzer to trigger them under limited computational

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024 12

TABLE VI: The detailed results of AFL-CoreSight on original binary and Armor-instrumenting binary.

Prog
Path Coverage Branch Coverage Execution(M) Trace Data(KB) Execution Time(us) Rebuilding Time(us)

Origin Armor Origin Armor Origin Armor Origin Armor Origin Armor Origin Armor

objdump 1,636 276 7,784 3,234 19.06 2.34 13.5 402.0 944 1,262 2,096 34,078
readelf 2,848 896 6,899 4,402 37.88 3.52 7.1 271.2 679 900 826 22,280

Mean 2,242 586 7,341 3,818 28.47 2.93 10.3 336.6 811 1,081 1,461 28,179
%-Chg - -73.86% - -47.99% - -89.71% - +3163.29% - +33.29% - +1828.75%

resources. Instead, we utilize the throughput, path coverage,
and branch coverage as metrics and rerun all the seeds by
AFL to uniformly measure the coverage. Moreover, to analyse
the workloads brought by Armor to ETM, in addition to the
size of trace data, we record the time of executing a testcase
and rebuilding the coverage, respectively.

Result. Table VI lists the arithmetic mean of the metrics
during five trials. Averagely, AFL-CoreSight only covers 586
paths and 3, 818 branches under Armor, with 73.86% and
47.99% decreasement of the native programs. This is mainly
due to the significant decrease in throughput.

Compared to the original binaries, though Armor intro-
duces some runtime overhead with increasing the average
execution time from 881us to 1, 081us, the decrease in
throughput is mainly due to the heavy overhead in rebuilding
coverage. Specifically, Armor increases 3163.29% of the trace
data of the original programs. As a result, AFL-CoreSight
spends 1828.75% more time on rebuilding coverage. The
throughput of AFL-CoreSight on the protected binaries is
only 2.93M, 89.71% less than on the original binaries.

RQ4: By generating 32.6× trace data, Armor brings heavy
workloads to the hardware-assisted fuzzer in rebuilding
coverage, significantly impeding AFL-CoreSight by reducing
89.71% throughput and 47.99% branches.

VI. Discussion and Future Work
Possible ways of anti-hardware tracing. Detecting and

disabling hardware tracing can be challenging due to its
transparency, especially for user-privilege programs. This
paper proposes a novel approach to bypass the transparency
and reach anti-hardware tracing by exploiting the bandwidth
issue inherent in hardware tracing instead of explicitly de-
tecting its presence. It is indeed a legitimate concern to
explore alternative methods apart from Armor to counter
hardware tracing. There are some straightforward counter-
measures which can be provided by TEE OS or the isolated
environment, such as disabling the ETM or protecting the
trace memory. However, in Section II-C, we have pointed
that these methods can be easily circumvented by attackers
and may negatively impact the normal usage of the ETM.
Notice that, though the buffer overflows brought by Armor
may impact the work of ETM, it is only occurring when the
protected software is traced by ETM, which we can regard
as malicious behavior. That means, the users who want to
analyse programs by hardware tracing will not be effected
by Armor if they do not maliciously trace the protected
software. A possible solution is utilizing self-modifying code
(SMC), which can modify the instructions at runtime to
obfuscate the codes. Nevertheless, only utilizing the SMC
may not lead to as significant trace data loss as Armor. The

attackers can still obtain the runtime information. Moreover,
SMC should be employed carefully due to the potential for
false positives and bugs introduced by runtime modifica-
tions [67]. In addition, many compiler-level techniques, such
as code obfuscation or time obfuscation, have been proposed
to reinforce the programs against reverse-engineering or
side channel attacks [1], [68]–[70]. However, they are not
designed initially for anti-hardware tracing. ETM can still
trace these programs and obtain the control-flow information.
Overhead of Armor. A potential concern may be the

noticeable performance overhead of Armor observed during
the evaluation on SPEC2006. However, this overhead primar-
ily stems from executing loop functions, which can vary sig-
nificantly among different programs. It is worth noting that
Armor exhibited low overhead on some programs. Addition-
ally, since Armor allows users to configure instrumentation
points, we can mitigate the performance impact by reducing
the amount of instrumentation. It should be noted that this
approach may potentially weaken Armor’s ability to trigger
overflow. Some overhead is necessary and unavoidable due
to the requirement of executing many branches to generate
trace data and trigger overflow quickly.
Cryptographic attack. In Section V-C, we assumed that

the adversaries only have the offsets of the certain function
entries. Even when using Armor for protection, partial con-
trol flows may still be leaked, potentially allowing attackers
to recover additional bits in the private keys by reverse-
engineer. However, this process is labor-intensive, providing
some degree of slowdown for attackers. It is worth noting
that skilled attackers may attempt to circumvent Armor by
configuring the ETM only to trace the addresses of the square
and multiply functions. Fortunately, as explained in Section
V-B1, the PIE+STRIP+ASLR strategy employed in Armor
can hinder these attacks, as the addresses are determined
dynamically during execution and cannot be readily obtained.
Limitation. There are still some limitations in the current

implementation of Armor: 1) Not 100% protection. While we
have implemented a context-based calculation mechanism for
triggering the overflow before executing some instructions,
our evaluation indicate that Armor cannot consistently guar-
antee that the ETF is under overflow during the execution of
these instructions. Actually, the amount of data generated
by the ETM is influenced by the configuration, executed
instructions, and the runtime environment. Our method is
limited to estimating the amount of output data rather than
accurately calculating it. This means that Armor hides spe-
cific information (e.g., control flow at the implicit-semantics
points) with a high, but not 100%, probability.
2) The high-speed execution of programs. A crucial principle

of anti-hardware tracing by triggering trace buffer overflows

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024 13

is keeping the high-speed execution of the program. Though
we utilize a detecting environment mechanism to guarantee
this principle, adversaries may bypass this mechanism and
slow down the execution to avoid overflows. For example,
turning down the CPU frequency after passing the detec-
tion [53], [71]. A possible way to reinforce the protection is
combining Armor with other anti-debugging techniques or
inserting more lightweight detection to guarantee high-speed
execution, which remains part of our future work.

3) The anti-ETM loops traced by ETM. The numerous trace
data is generated when ETM traces the anti-ETM loops
instrumented by Armor. Adversaries may bypass this by
excluding the addresses of anti-ETM loops from the traced
address range. However, precise address configuration re-
quires attackers to obtain the memory layout of secure
code in advance, which is impeded by our PIE+STRIP+ASLR
strategy. During a single run, attackers may fetch and analyse
part of the trace data on the fly to speculate the addresses
of anti-ETM loops and then reconfigure and restart ETM to
resume tracing. However, this process is uneasy and time-
consuming. Attackers may belatedly obtain the addresses
after the execution of some instructions in the software,
where partial secret information is still undisclosed. Another
possible way to exclude these addresses is disabling the
ETM during the anti-ETM loops and enabling it after the
loops. However, it may be challenging to conduct this attack
even for timing-aware attackers. Moreover, they need to
repeatedly perform the program to determine the window
period of the loops. However, the context-based calculation
mechanism in Armor calculates the times of anti-ETM loops
at runtime. This implies that the timing of entering and
exiting the loop is non-deterministic for each run (like some
time obfuscation methods [68], [69]). It may be hard for
attackers to capture the window period precisely. Inserting
some lightweight random code to improve Armor in resisting
the time-aware attackers is also feasible.

Particularly, the offensive and defensive sides are con-
stantly engaged in a game of strategy and evolution. Despite
the possibility of Armor being bypassed, we believe that

implementing anti-hardware tracing techniques from the per-

spective of trace buffer overflow can provide valuable insights

into security research. Moreover, Armor is a software-level
solution for thwarting ETM-based attacks without modifying
the hardware. This advantage makes Armor facile to deploy
on real-world devices, particularly these SPNIDEN-enabled
devices. It also makes Armor easily combinable with specific
techniques, such as time obfuscation [68], [69], to reinforce
the protection.

Interrupt-capable attacker. In our threat model, we
assume the attacker cannot interrupt the protected software
running in the Secure world or isolated environments. This
assumption can be achieved by carefully managing the pri-
orities of the interrupts or masking specific interrupts [28],
[56]–[58]. However, if the attackers can raise the non-secure
interrupts to stall the protected software, they may bring
some troubles to Armor. Specifically, to break the high-
speed principle in Armor and avoid the trace buffer overflow,
they can frequently interrupt and slow down the software

after passing our detection environment mechanism [71].
To exclude the anti-ETM loops from the traced addresses,
interrupt-capable attackers only need to interrupt and jump
out of the protected process once after passing our detection.
Then, they can analyse the junk addresses, reconfigure the
ETM, and resume the process. Moreover, the attackers even
can conduct interrupt-based side channel attacks (e.g., load-
step [53]) rather than utilizing ETM to steal the secret data.
Fortunately, the interrupt-based attacks [53], [55], [72],

[73] on TEE have received significant attention from re-
searchers, resulting in the development of many solu-
tions [28], [74]–[77]. ARM TrustZone also supports blocking
the non-secure interrupts while the TA is running [56],
[57], which effectively limits the capability of the interrupt-
based attacks on the ARM platform [76]. Notably, different
ARM architectures and devices may have different methods
to mask the non-secure interrupts. On TF-M, we can set
the AIRCR.PRIS during TF-M core initialization and the
PRIMASK NS in the entry of TA to achieve this [57].
On TF-A (e.g., ARMv8-A), we can use the bits I and F
in PSTATE to mask the Interrupt Request (IRQ) and Fast
Interrupt Request (FIQ), respectively [48], [58]. For instance,
on ARM Generic Interrupt Controller (GIC) v2 mode, the
non-secure and secure interrupts are mapped as the IRQ
and FIQ, respectively. By setting the I bit as 1 and F as 0
when entering the Secure world, we can mask the non-secure
interrupts during the execution in the Secure world [58]. In
conclusion, the key idea is to conduct specific configurations
in the Secure world to block foreign interrupts and prevent
kernel-privilege attackers from modifying the configurations.
This may require support from the secure monitor in EL3 or
TEE OS in EL1. Since blocking the malicious interrupts has
become an essential principle in designing and implementing
the TEE firmware and TEE OS [28], [57], [74]–[76], it is
feasible and reasonable to assume that malicious interrupts
can be blocked on the ARM platform.
Armor on other platforms. Similar to ARM, Intel also

proposed the tracing technique Intel Processor Trace (PT),
which is popular and employed in many researches [5], [10],
[17], [24], [25]. To the best of our knowledge, trace buffer
overflow also exists on Intel PT [2], [24]. Therefore, it may
be possible to port Armor on Intel PT according to our
models and principles of anti-hardware tracing. However,
Though most of the features in Intel PT are similar to
those in ARM CoreSight, there is some difference between
them. For example, our cryptographic attack in Section V-C
relies on the addresses of specific functions that are directly
called in native binaries. Intel PT may be unable to capture
these addresses as it only records the addresses of indirect
branches, while ARM CoreSight can achieve this as the
branch broadcasting mode of ETM. Moreover, ETM can non-
invasively trace the processes in the Secure world on some
SPNIDEN-enabled devices [30]. In contrast, to our knowledge,

Intel PT may be only able to trace the debug enclaves in Intel

SGX [26], [78]. Due to the more powerful tracing ability than
Intel PT, ARM CoreSight may bring more serious security
threats, which is one of the reasons that we conducted
Armor on ARM platforms.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024 14

VII. Related Work

Hardware tracing. Benefiting from the low overhead
and powerful runtime information tracing capabilities, hard-
ware tracing techniques have been widely used in various
areas [5]–[12], [15]–[24]. Remarkably, some works utilize
hardware tracing for conducting attacks, such as extracting
private keys of the AES algorithm in TA [30] or detecting
cryptographic algorithms [31], [32]. However, most works
focus on leveraging hardware tracing rather than resisting
it. While some defense methods for nailgun are proposed to
manage debug authentication signals and prevent tracing the
TA [30], they do not specifically address the challenge of anti-
hardware tracing. To the best of our knowledge, Armor is
the first tool specifically designed for anti-hardware tracing.

Software protection. Software protection techniques
have been developed over the years, such as anti-
debugging [36]–[38], code obfuscation [1], [39]–[43], and
anti-fuzzing [79], [80]. Nevertheless, to our knowledge, these
works lack specific focus on anti-hardware tracing.

Anti-debugging techniques mainly focus on detecting or
preventing external debuggers, such as timing checks, pro-
cess checks, and self-debugging [14], [36], [37]. As stated in
Section I, they may not be effective in preventing attackers
who employ transparent tracing techniques [11], [14].

Code obfuscation is a popular technique used to pro-
tect software against malicious modifications or reverse-
engineering [1], [39]–[44]. Some common tricks in code
obfuscation, such as inserting irrelevant code [1], [44], is
similar to those utilized in Armor. Our evaluation shows
that though OLLVM increases the branches and causes ETM
to generate more trace data, it is not as efficient as Armor in
triggering the overflow and concealing runtime information.

Attacks and defenses on TEE. Due to the rapid develop-
ment and popularizing of TEE techniques, researchers have
paid many efforts on breaking the confidentiality of TEE or
reinforcing the TEE [28], [51]–[55], [72]–[77]. However, most
of these attacks or defenses around TEE focus on the side
channel attacks, such as cache or controlled side channel [28],
[51]–[54], [72], [73], [75], while the security threats brought
by hardware tracing techniques to TEE are ignored for a long
time [30]. In fact, as demonstrated in [30] and our evaluation,
hardware tracing can conduct powerful and high-resolution
attacks due to its powerful tracing ability. We notice this
threat and propose the anti-hardware tracing technique to
provide our insights to the community.

Alleviating buffer overflow. Various techniques have
been proposed to address the trace buffer overflow issues.
Hart [71] avoids the overflow in CoreSight by configuring
the Performance Monitor Unit (PMU) to interrupt the process
before the overflow occurs. However, this approach requires
frequent interrupts and leads to a significant slowdown in
the program. As mentioned in Section VI, this method may
be resisted by managing the interrupts carefully. JPortal [24]
introduces algorithms to precisely recover the control flow
from PT traces even under some trace data loss. However,
the effectiveness of the recovery algorithm diminishes as
more data is lost. With the numerous overflows and trace

data loss caused by Armor, attackers may struggle to fully
recover the control flow, even with the algorithms used in
JPortal. The hardware vendors also invest efforts to alleviate
the buffer overflow. The ETMv4 specification [49] suggests an
optional feature in the TRCSTALLCTLR register to prevent
overflows by stalling the program when the trace buffer
reaches a certain threshold. However, this approach can
introduce significant runtime overhead, which can be de-
tected and prevented by the detection mechanism in Armor.
Additionally, our investigation indicates that this feature is
not implemented by some platforms, such as ARM Juno R2.

VIII. Conclusion
In this paper, we introduce anti-hardware tracing as a

novel protection technique against hardware tracing. Unlike
existing methods, anti-hardware tracing leverages hardware
limitations to trigger overflow and safeguard the runtime
information. We build a model to analyse the trace buffer
overflow and point out three key principles for efficient
anti-hardware tracing. Then we design a framework Armor
on ARM Juno R2. Armor instruments the protection and
loop functions to support these principles and conduct some
strategies such as PID replacement and PIE+STRIP+ASLR.
Through comprehensive evaluations, we demonstrate that
Armor effectively safeguards control flow from ETM and
successfully resists cryptographic attacks like the one con-
ducted on GnuPG 1.4.13 by us. Additionally, Armor signifi-
cantly hampers hardware-assisted fuzzing.

References
[1] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-llvm–

software protection for the masses,” in 2015 IEEE/ACM 1st International

Workshop on Software Protection. IEEE, 2015, pp. 3–9.
[2] I. Corporation, “Intel® 64 and ia-32 architectures software devel-

oper manuals,” https://www.intel.com/content/www/us/en/developer/
articles/technical/intel-sdm.html, 2023.

[3] ARM, “Arm coresight soc-400 technical reference manual,” https://
developer.arm.com/documentation/100536/latest/, 2016.

[4] S. D. Sharma and M. Dagenais, “Hardware-assisted instruction profiling
and latency detection,” The Journal of Engineering, vol. 2016, no. 10, pp.
367–376, 2016.

[5] S. Schumilo, C. Aschermann, R. Gawlik, S. Schinzel, and T. Holz,
“kafl:hardware-assisted feedback fuzzing for os kernels,” in 26th USENIX

Security Symposium (USENIX Security 17), 2017, pp. 167–182.
[6] G. Zhang, X. Zhou, Y. Luo, X. Wu, and E. Min, “Ptfuzz: Guided fuzzing

with processor trace feedback,” IEEE Access, vol. 6, pp. 37 302–37 313,
2018.

[7] Y. Chen, D. Mu, J. Xu, Z. Sun, W. Shen, X. Xing, L. Lu, and B. Mao,
“Ptrix: Efficient hardware-assisted fuzzing for cots binary,” in Proceed-

ings of the 2019 ACM Asia Conference on Computer and Communications

Security, 2019, pp. 633–645.
[8] Y. S. Akira Moroo, “Armored coresight: Towards efficient

binary-only fuzzing,” https://ricercasecurity.blogspot.com/2021/11/
armored-coresight-towards-efficient.html, 2021.

[9] W. Li, J. Shi, F. Li, J. Lin, W. Wang, and L. Guan, “µafl: non-intrusive
feedback-driven fuzzing for microcontroller firmware,” in Proceedings

of the 44th International Conference on Software Engineering, 2022, pp.
1–12.

[10] S. Schumilo, C. Aschermann, A. Abbasi, S. Wörner, and T. Holz, “Nyx:
Greybox hypervisor fuzzing using fast snapshots and affine types,” in
30th USENIX Security Symposium (USENIX Security 21), 2021, pp. 2597–
2614.

[11] Z. Ning and F. Zhang, “Ninja: Towards transparent tracing and debug-
ging on arm,” in 26th USENIX Security Symposium (USENIX Security

17), 2017, pp. 33–49.

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://developer.arm.com/documentation/100536/latest/
https://developer.arm.com/documentation/100536/latest/
https://ricercasecurity.blogspot.com/2021/11/armored-coresight-towards-efficient.html
https://ricercasecurity.blogspot.com/2021/11/armored-coresight-towards-efficient.html

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024 15

[12] L. Xue, H. Zhou, X. Luo, Y. Zhou, Y. Shi, G. Gu, F. Zhang, and M. H. Au,
“Happer: Unpacking android apps via a hardware-assisted approach,”
in 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021, pp.
1641–1658.

[13] D. Tian, Q. Ying, X. Jia, R. Ma, C. Hu, and W. Liu, “Mdchd: A novel
malware detection method in cloud using hardware trace and deep
learning,” Computer Networks, vol. 198, p. 108394, 2021.

[14] G. Li, Y. Chen, T. Li, T. Li, X. Wu, C. Zhang, and X. Han, “Poster: Pt-dbg:
Bypass anti-debugging with intel processor tracing,” in Proceedings of

the 39th IEEE Symposium on Security and Privacy, San Francisco, CA,

USA, 2018, pp. 21–23.
[15] Y. Liu, P. Shi, X. Wang, H. Chen, B. Zang, and H. Guan, “Transparent

and efficient cfi enforcement with intel processor trace,” in 2017 IEEE

International Symposium on High performance computer architecture

(HPCA). IEEE, 2017, pp. 529–540.
[16] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, “Pt-cfi: Transparent backward-

edge control flow violation detection using intel processor trace,” in
Proceedings of the Seventh ACM on Conference on Data and Application

Security and Privacy, 2017, pp. 173–184.
[17] X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding control flows using

intel processor trace,” ACM SIGPLAN Notices, vol. 52, no. 4, pp. 585–
598, 2017.

[18] M. Kadar, G. Fohler, D. Kuzhiyelil, and P. Gorski, “Safety-aware integra-
tion of hardware-assisted program tracing in mixed-criticality systems
for security monitoring,” in 2021 IEEE 27th Real-Time and Embedded

Technology and Applications Symposium (RTAS). IEEE, 2021, pp. 292–
305.

[19] D. Kwon, J. Seo, S. Baek, G. Kim, S. Ahn, and Y. Paek, “Vm-cfi: Control-
flow integrity for virtual machine kernel using intel pt,” in International

Conference on Computational Science and Its Applications. Springer,
2018, pp. 127–137.

[20] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient
protection of path-sensitive control security,” in 26th USENIX Security

Symposium (USENIX Security 17), 2017, pp. 131–148.
[21] Y. David, X. Sun, R. J. Sofaer, A. Senthilnathan, J. Yang, Z. Zuo, G. H. Xu,

J. Nieh, and R. Gu, “Upgradvisor: Early adopting dependency updates
using hybrid program analysis and hardware tracing,” in 16th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 22),
2022, pp. 751–767.

[22] C. Yagemann, M. Pruett, S. P. Chung, K. Bittick, B. Saltaformaggio, and
W. Lee, “Arcus: Symbolic root cause analysis of exploits in production
systems,” in 30th USENIX Security Symposium (USENIX Security 21),
2021, pp. 1989–2006.

[23] W. Cui, X. Ge, B. Kasikci, B. Niu, U. Sharma, R. Wang, and I. Yun, “Rept:
Reverse debugging of failures in deployed software,” in 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 18),
2018, pp. 17–32.

[24] Z. Zuo, K. Ji, Y. Wang, W. Tao, L. Wang, X. Li, and G. H. Xu, “Jportal:
precise and efficient control-flow tracing for jvm programs with intel
processor trace,” in Proceedings of the 42nd ACM SIGPLAN International

Conference on Programming Language Design and Implementation, 2021,
pp. 1080–1094.

[25] Q. Ying, Y. Yu, D. Tian, X. Jia, R. Ma, and C. Hu, “Cjspector: A
novel cryptojacking detection method using hardware trace and deep
learning,” Journal of Grid Computing, vol. 20, no. 3, p. 31, 2022.

[26] Intel, “Intel® software guard extensions,” https://www.intel.com/
content/www/us/en/developer/tools/software-guard-extensions/
overview.html, 2023.

[27] ARM, “Arm security technology building a secure system us-
ing trustzone technology,” https://developer.arm.com/documentation/
PRD29-GENC-009492/latest/, 2009.

[28] Y. Zhu, P. Li, L. Zhao, D. Meng, and R. Hou, “Chaosintc: A secure
interrupt management mechanism against interrupt-based attacks on
tee,” in 2023 60th ACM/IEEE Design Automation Conference (DAC).
IEEE, 2023, pp. 1–6.

[29] Y. Zhang, Y. Hu, Z. Ning, F. Zhang, X. Luo, H. Huang, S. Yan, and
Z. He, “Shelter: Extending arm cca with isolation in user space,” in
32nd USENIX Security Symposium (USENIX Security’23), 2023.

[30] Z. Ning and F. Zhang, “Understanding the security of arm debugging
features,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
2019, pp. 602–619.

[31] J. Park and Y. Park, “Symmetric-key cryptographic routine detection
in anti-reverse engineered binaries using hardware tracing,” Electronics,
vol. 9, no. 6, p. 957, 2020.

[32] W. Yang and Y. Park, “Identifying symmetric-key algorithms using cnn
in intel processor trace,” Electronics, vol. 10, no. 20, p. 2491, 2021.

[33] H. Shan, M. Huang, Y. Liu, S. Nissankararao, Y. Jin, S. Wang, and
D. Sullivan, “Crowbar: Natively fuzzing trusted applications using arm
coresight,” Journal of Hardware and Systems Security, pp. 1–11, 2023.

[34] Q. Wang, B. Chang, S. Ji, Y. Tian, X. Zhang, B. Zhao, G. Pan, C. Lyu,
M. Payer, W. Wang et al., “Syztrust: State-aware fuzzing on trusted os
designed for iot devices,” arXiv preprint arXiv:2309.14742, 2023.

[35] H. Shan, S. Nissankararao, Y. Liu, M. Huang, S. Wang, Y. Jin, and D. Sul-
livan, “Lightemu: Hardware assisted fuzzing of trusted applications,”
arXiv preprint arXiv:2311.09532, 2023.

[36] M. N. Gagnon, S. Taylor, and A. K. Ghosh, “Software protection through
anti-debugging,” IEEE Security & Privacy, vol. 5, no. 3, pp. 82–84, 2007.

[37] R. R. Branco, G. N. Barbosa, and P. D. Neto, “Scientific but not
academical overview of malware anti-debugging, anti-disassembly and
anti-vm technologies,” Black Hat, vol. 1, no. 2012, pp. 1–27, 2012.

[38] P. Chen, C. Huygens, L. Desmet, and W. Joosen, “Advanced or not? a
comparative study of the use of anti-debugging and anti-vm techniques
in generic and targeted malware,” in IFIP International Conference on

ICT Systems Security and Privacy Protection. Springer, 2016, pp. 323–
336.

[39] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proceedings of the 10th ACM

conference on Computer and communications security, 2003, pp. 290–
299.

[40] C. K. Behera and D. L. Bhaskari, “Different obfuscation techniques for
code protection,” Procedia Computer Science, vol. 70, pp. 757–763, 2015.

[41] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware
analysis using conditional code obfuscation.” in NDSS, 2008.

[42] M. Schloegel, T. Blazytko, M. Contag, C. Aschermann, J. Basler, T. Holz,
and A. Abbasi, “Loki: Hardening code obfuscation against automated
attacks,” in 31st USENIX Security Symposium (USENIX Security 22), 2022,
pp. 3055–3073.

[43] M. F. Oberhumer, “Upx the ultimate packer for executables,” http://upx.
sourceforge. net/, 2004.

[44] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and
E. Weippl, “Protecting software through obfuscation: Can it keep pace
with progress in code analysis?” ACM Computing Surveys (CSUR),
vol. 49, no. 1, pp. 1–37, 2016.

[45] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise, l3
cache side-channel attack,” in 23rd USENIX security symposium (USENIX

security 14), 2014, pp. 719–732.
[46] ARM, “Juno r2 arm development platform soc,” https://developer.arm.

com/documentation/100114/0200, 2016.
[47] ——, “Coresight trace memory controller technical reference manual,”

https://developer.arm.com/documentation/ddi0461/b/?lang=en, 2011.
[48] ——, “Arm architecture reference manual for a-profile architecture,”

https://developer.arm.com/documentation/ddi0487/ja/?lang=en, 2023.
[49] ——, “Embedded trace macrocell architecture specification etmv4.0 to

etm4.6,” https://developer.arm.com/documentation/ihi0064/h/?lang=en,
2021.

[50] D. Lee, D. Jung, I. T. Fang, C. che Tsai, and R. A. Popa, “An Off-Chip
attack on hardware enclaves via the memory bus,” in 29th USENIX

Security Symposium (USENIX Security 20). USENIX Association,
Aug. 2020, pp. 487–504. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity20/presentation/lee-dayeol

[51] S. K. Bukasa, R. Lashermes, H. Le Bouder, J.-L. Lanet, and A. Legay,
“How trustzone could be bypassed: Side-channel attacks on a modern
system-on-chip,” in Information Security Theory and Practice: 11th IFIP

WG 11.2 International Conference, WISTP 2017, Heraklion, Crete, Greece,

September 28–29, 2017, Proceedings 11. Springer, 2018, pp. 93–109.
[52] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Trusense:

Information leakage from trustzone,” in IEEE INFOCOM 2018-IEEE

conference on computer communications. IEEE, 2018, pp. 1097–1105.
[53] Z. Kou, W. He, S. Sinha, and W. Zhang, “Load-step: A precise trustzone

execution control framework for exploring new side-channel attacks
like flush+ evict,” in 2021 58th ACM/IEEE Design Automation Conference

(DAC). IEEE, 2021, pp. 979–984.
[54] K. Zili, S. Sinha, H. Wenjian, and W. ZHANG, “Cache side-channel

attacks and defenses of the sliding window algorithm in tees,” in 2023

Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2023, pp. 1–6.

[55] Z. Kou, S. Sinha, W. He, and W. Zhang, “Attack directories on arm
big. little processors,” in Proceedings of the 41st IEEE/ACM International

Conference on Computer-Aided Design, 2022, pp. 1–9.
[56] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive

survey,” ACM computing surveys (CSUR), vol. 51, no. 6, pp. 1–36, 2019.

https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://developer.arm.com/documentation/PRD29-GENC-009492/latest/
https://developer.arm.com/documentation/PRD29-GENC-009492/latest/
https://developer.arm.com/documentation/100114/0200
https://developer.arm.com/documentation/100114/0200
https://developer.arm.com/documentation/ddi0461/b/?lang=en
https://developer.arm.com/documentation/ddi0487/ja/?lang=en
https://developer.arm.com/documentation/ihi0064/h/?lang=en
https://www.usenix.org/conference/usenixsecurity20/presentation/lee-dayeol
https://www.usenix.org/conference/usenixsecurity20/presentation/lee-dayeol

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024 16

[57] T. Firmware-M, “Trusted firmware-m documentation,” https:
//developer.nordicsemi.com/nRF Connect SDK/doc/v1.7-branch/tfm/
docs/technical references/tfm non-secure interrupt handling.html,
2020.

[58] T. Firmware-A, “Trusted firmware-a documentation,”
https://trustedfirmware-a.readthedocs.io/en/latest/design/
interrupt-framework-design.html, 2020.

[59] C. HWANG, “ptm2human,” https://github.com/hwangcc23/ptm2human.
[60] TrustedFirmware.org, “About OP-TEE — OP-TEE documentation doc-

umentation,” https://optee.readthedocs.io/en/latest/general/about.html,
2023.

[61] T. Yue, P. Wang, Y. Tang, E. Wang, B. Yu, K. Lu, and X. Zhou, “Ecofuzz:
Adaptive energy-saving greybox fuzzing as a variant of the adversarial
multi-armed bandit,” in Proceedings of the 29th USENIX Conference on

Security Symposium, 2020, pp. 2307–2324.
[62] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah,

“Mopt: Optimized mutation scheduling for fuzzers.” in USENIX Security

Symposium, 2019, pp. 1949–1966.
[63] M. Zalewski, “American fuzzy lop,” 2017.
[64] D. M. Gordon, “A survey of fast exponentiation methods,” Journal of

algorithms, vol. 27, no. 1, pp. 129–146, 1998.
[65] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[66] O.-T. documentation, “Trusted Applications — OP-TEE documen-
tation documentation,” https://optee.readthedocs.io/en/latest/building/
trusted applications.html, 2018.

[67] Z. Zhou, C. Wang, and Q. Zhao, “No-fuzz: Efficient anti-fuzzing
techniques,” in Security and Privacy in Communication Networks, F. Li,
K. Liang, Z. Lin, and S. K. Katsikas, Eds. Cham: Springer Nature
Switzerland, 2023, pp. 731–751.

[68] A. Fell, H. T. Pham, and S.-K. Lam, “Tad: time side-channel attack
defense of obfuscated source code,” in Proceedings of the 24th Asia and

South Pacific Design Automation Conference, 2019, pp. 58–63.
[69] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Thwart-

ing cache side-channel attacks through dynamic software diversity.” in
NDSS, 2015, pp. 8–11.

[70] R. M. Tsoupidi, E. Troubitsyna, and P. Papadimitratos, “Thwarting code-
reuse and side-channel attacks in embedded systems,” arXiv preprint

arXiv:2304.13458, 2023.
[71] Y. Du, Z. Ning, J. Xu, Z. Wang, Y.-H. Lin, F. Zhang, X. Xing, and B. Mao,

“Hart: Hardware-assisted kernel module tracing on arm,” in European

Symposium on Research in Computer Security. Springer, 2020, pp. 316–
337.

[72] J. Van Bulck, F. Piessens, and R. Strackx, “Sgx-step: A practical attack
framework for precise enclave execution control,” in Proceedings of the

2nd Workshop on System Software for Trusted Execution, 2017, pp. 1–6.
[73] ——, “Nemesis: Studying microarchitectural timing leaks in rudimen-

tary cpu interrupt logic,” in Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, 2018, pp. 178–
195.

[74] S. Zhao, Q. Zhang, Y. Qin, W. Feng, and D. Feng, “Sectee: A software-
based approach to secure enclave architecture using tee,” in Proceedings

of the 2019 ACM SIGSAC Conference on Computer and Communications

Security, 2019, pp. 1723–1740.
[75] S. Constable, J. Van Bulck, X. Cheng, Y. Xiao, C. Xing, I. Alexandrovich,

T. Kim, F. Piessens, M. Vij, and M. Silberstein, “Aex-notify: Thwarting
precise single-stepping attacks through interrupt awareness for intel
sgx enclaves,” in 32nd USENIX Security Symposium (USENIX Security

23), 2023, pp. 4051–4068.
[76] R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-R.

Sadeghi, and E. Stapf, “Cure: A security architecture with customizable
and resilient enclaves,” in 30th USENIX Security Symposium (USENIX

Security 21), 2021, pp. 1073–1090.
[77] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-sgx: Eradicating

controlled-channel attacks against enclave programs.” in NDSS, 2017.
[78] “Intel® Processor Trace and Intel SGX,” https://

community.intel.com/t5/Intel-Software-Guard-Extensions/
Intel-Processor-Trace-and-Intel-SGX/m-p/1181483#M3538, 2018.

[79] J. Jung, H. Hu, D. Solodukhin, D. Pagan, K. H. Lee, and T. Kim,
“Fuzzification:anti-fuzzing techniques,” in 28th USENIX Security Sym-

posium (USENIX Security 19), 2019, pp. 1913–1930.
[80] E. Güler, C. Aschermann, A. Abbasi, and T. Holz, “Antifuzz: Impeding

fuzzing audits of binary executables,” in 28th USENIX Security Sympo-

sium (USENIX Security 19), 2019, pp. 1931–1947.

Tai Yue received his B.S. degree from the Depart-
ment of Mathematics, Nanjing University, Nanjing,
in 2017 and his M.S. degree from the College of
Computer, National University of Defense Technol-
ogy, Changsha, in 2019. He is currently pursuing
the Ph.D degree from the College of Computer,
National University of Defense Technology, Chang-
sha. His research interests include system security,
software security, and hardware-assisted security.

Fengwei Zhang received the PhD degree in Com-
puter Science from the George Mason University.
He is an Associate Professor in the Department
of Computer Science and Engineering at Southern
University of Science and Technology (SUSTech).
His primary research interests are in the areas
of systems security, with a focus on trustworthy
execution, hardware-assisted security, debugging
transparency, transportation security, and plausible
deniability encryption.

Zhenyu Ning is an Associate Professor at Hunan
University. He received his Ph.D. degree in Com-
puter Science from Wayne State University in 2020.
His research interests are in the areas of security
and privacy, including system security, mobile se-
curity, IoT security, trusted execution environment,
hardware-assisted security.

Pengfei Wang received his B.S., M.S., and Ph.D
degrees in computer science and technology, in
2011, 2013, and 2018 respectively, from the College
of Computer, National University of Defense Tech-
nology, Changsha. He is now an associate professor
in the College of Computer, National University
of Defense Technology, Changsha. His research
interests include operating systems and software
testing.

Xu Zhou received his BS, MS, and Ph.D degree
in the School of Computer Science from National
University of Defense Technology, China, in 2007,
2009, and 2013, respectively. He is now an asso-
ciate professor in the School of Computer Science,
National University of Defense Technology. His
research interests include operating system and
security.

Kai Lu received his B.S. degree and Ph.D. degree
in 1995 and 1999, respectively, both in computer
science and technology, from the College of Com-
puter, National University of Defense Technology,
Changsha. He is now a professor in the College
of Computer, National University of Defense Tech-
nology, Changsha. His research interests include
operating systems, parallel computing, and security.

Lei Zhou received the PhD degree in Computer
Science from Central South University. He is a
Research Associate in the College of Computer
at National University of Defense Technology. His
primary research interests are in the areas of
systems security, including trustworthy execution,
hardware-assisted security, and memory forensics.

https://developer.nordicsemi.com/nRF_Connect_SDK/doc/v1.7-branch/tfm/docs/technical_references/tfm_non-secure_interrupt_handling.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/v1.7-branch/tfm/docs/technical_references/tfm_non-secure_interrupt_handling.html
https://developer.nordicsemi.com/nRF_Connect_SDK/doc/v1.7-branch/tfm/docs/technical_references/tfm_non-secure_interrupt_handling.html
https://trustedfirmware-a.readthedocs.io/en/latest/design/interrupt-framework-design.html
https://trustedfirmware-a.readthedocs.io/en/latest/design/interrupt-framework-design.html
https://github.com/hwangcc23/ptm2human
https://optee.readthedocs.io/en/latest/general/about.html
https://optee.readthedocs.io/en/latest/building/trusted_applications.html
https://optee.readthedocs.io/en/latest/building/trusted_applications.html
https://community.intel.com/t5/Intel-Software-Guard-Extensions/Intel-Processor-Trace-and-Intel-SGX/m-p/1181483#M3538
https://community.intel.com/t5/Intel-Software-Guard-Extensions/Intel-Processor-Trace-and-Intel-SGX/m-p/1181483#M3538
https://community.intel.com/t5/Intel-Software-Guard-Extensions/Intel-Processor-Trace-and-Intel-SGX/m-p/1181483#M3538

	Introduction
	Background and Threat Model
	Hardware Tracing Technique
	Embedded Trace Macrocell
	Threat Model and Assumptions

	Escaping from Hardware Tracing
	Workflow of Trace Buffer
	Trace Buffer Overflow on ARM Juno R2

	Design and Implementation
	Overview
	Protection Function
	Loop Function
	Implementation

	Evaluation
	Performance Evaluation
	Security Evaluation
	PIE+STRIP+ASLR
	PID replacement
	Effectiveness in triggering overflows

	Use Case: Resisting the Cryptographic Attack
	Use Case: Anti-fuzzing

	Discussion and Future Work
	Related Work
	Conclusion
	References
	Biographies
	Tai Yue
	Fengwei Zhang
	Zhenyu Ning
	Pengfei Wang
	Xu Zhou
	Kai Lu
	Lei Zhou

