2021 IEEE 21st International Conference on Communication Technology

An Efficient Feedback-enhanced Fuzzing Scheme
for Linux-based IoT Firmwares

Qidi Yin Xu Zhou Hangwei Zhang
National University of Defense National University of Defense National University of Defense
Technology Technology Technology
Changsha, China Changsha, China Changsha, China
yingidi @nudt.edu.cn zhouxu@nudt.edu.cn zhanghangwei@nudt.edu.cn

Abstract—As the number of IoT devices grows at an exponen-
tial rate, the security issues of these devices are having a huge
impact on people’s lives. Fuzzing, a dynamic testing method that
can be automated at scale, is becoming more and more extensively
utilized on Io devices in order to find the vulnerabilities in these
devices. In this work, we present an efficient feedback-enhanced
fuzzing scheme for Linux-based IoT firmwares. It uses a two-level
scheduler and a feedback-enhanced monitor to collect operating
data for seed selection and ranking. We develop a prototype
system and evaluate it by emulating and testing five different
firmwares. The result shows that our system is able to effectively
discover more known vulnerabilities than the state-of-the-art IoT
fuzzer and eventually discovered 5 unknown vulnerabilities.

Index Terms—IoT; Security; Gre-box fuzzing; Feedback

I. INTRODUCTION

With the advancement of Internet of Things (IoT), IoT
devices are no longer restricted to certain commercial appli-
cations; they’ve made their way into our homes and have
become an integral part of our daily lives. According to
estimates [1]], there will be over 75 billion IoT connected
devices in use by 2025, which is a roughly threefold growth
over the installed base of IoT in 2019. Linux-based systems
are commonly employed in IoT devices, as they are open
source and manufacturers can customize a simple Linux-based
system to meet their own requirements. Because [oT devices
have limited computational resources, system performance
optimization and application functionality are prioritized. As a
result, IoT devices are more vulnerable when hacked and it’s
critical to assess the IoT devices’ dependability and security.

Fuzzing [2]], which is effective in finding vulnerabilities in
both software and systems, is the most promising dynamic
testing technique applied in IoT devices. Fuzzing identifies
vulnerabilities by supplying random data to the target and
looking for anomalies in the program or system. Fuzzing
towards IoT devices often sends inputs in protocol format to
IoT devices and detects the abnormal behaviors like hangs or
no responds.

Emulation technologies are widely used in [oT fuzzing [3]]—
[9]] as the target firmware can be simply downloaded from the
internet, extracted [[10]], and emulated on desktop computers.
Firm-AFL [6]] combines user-level and system-level emulation
to deliver high throughput fuzzing on targets. FirmFuzz [7]
and EWVHunter [§] design a crawler to browse the WEB

978-1-6654-3205-4/21/$31.00 ©2021 IEEE

interface of target IoT devices, then display multiple mutations
on collected messages and replay them as inputs to target
IoT devices. On top of crawler-based fuzzers, SIoTFuzzer 9]
analyzes intra-dependencies between messages and generates
stateful inputs for targets.

1) Challenges: Despite the fact that crawler-based grey-
box fuzzers such as FirmFuzz and SloTFuzzer use cutting-
edge fuzzing technologies, they are still ineffective in detecting
real-world vulnerabilities for the following reasons. First, in
these fuzzers, all test cases are generated by mutating seed
from an initial seed set. The initial seed set is collected by
capturing real-word messages in communication in an initial
phase. During fuzzing, they apply mutations on these messages
field by field to generate well-structured inputs. However,
simply modifying a field each time is insufficient, i.e., the
generated test cases are unlikely to uncover deeper flaws.
For example, the body of a POST message usually contains
multiple parameters, as shown in Fig[I{a). Once mutation is
applied to just one field at a time, inputs will be generated as
shown in Fig[T[b) or Fig[I[c). However, in order to exploit the
buffer overflow (BO) vulnerability, we have to build the body
as shown in figure Fig[T(d), which cannot be done by existing
approaches.

Type=t&Addr=192.168.1.1
(a)

Type=XXX&Addr=192.168.1.1
(b)

Type=t&Addr=XXX
(c)

Type=p&Addr=A*100
(d)

Fig. 1. The body of a POST message

Second, there is a lack of seed scheduling, which slows
the discovery of vulnerabilities. FirmFuzz, for example, uses
a crawler to traverse the web interface and apply a series
of message mutations after collecting a POST message. Not
only does it ignore the waste generated by fuzzing duplicate

754

messages, but it also ignores the priority of various types of
messages. Regardless of the fact that SIoTFuzzer captures all
messages while traversing the web interface and filters out
duplicates, it still lacks seed scheduling.

2) Our Solution: To solve the above problems, we pro-
posed a feedback-enhanced fuzzing scheme for Linux-based
firmware to address the aforementioned problems. To update
the seed set, we trace the coverage of the emulated platform
each time we mutate a seed to generate an input and send
it to the target IoT device. For input that brings coverage
increasement, we put it into the seed set and afterwards
generating more inputs based on that new seed. To compensate
for lack of scheduling, we do a first run on all of the seeds
and rank them using a two-level scheduling mechanism. And
each time we find a coverage-increasing input, its score will
be used to prioritized it in the seed set.

To evaluate our system, we implement it on the top of
SIoTFuzzer [9]. We collect five firmwares including four
routers and an IP camera for our evaluation and emulate these
firmwares based on FirmAE |[11f]. Following that, we evaluate
the performance of our system by comparing the number of
vulnerabilities discovered and the time used with SIoTFuzzer.
Our evaluation demonstrates that (1) our system can find more
vulnerabilities than SIoTFuzzer in shorter time and (2) our
system is able to find unknown unknown vulnerabilities.

3) Contributions: In summary, we make the following
contributions in our paper.

e We design and develop a feedback-enhanced fuzzing
prototype for IoT firmwares. Using feedback in emulated
IoT devices, our system can update the seed set for
finding deep vulnerabilities and schedule seeds for finding
vulnerabilities faster.

o The evaluation on real-world IoT firmwares shows that
our approach could efficiently find more vulnerabilities in
these firmwares than the state-of-the-art tool and is able
to find unknown vulnerabilities.

&

Feedback-enhanced
component

\
1
Level 1 Queue !
18
Level 2 Queue
T

Two-level Scheduler

Mutation

Emulated
Target

Seed Set

L©,

A — “

Fig. 2. The main components of our system

II. OVERVIEW

To address the challenges raised in the preceding section,
we present a feedback-enhanced fuzzing scheme for IoT
firmwares. Figl] depicts a high-level overview of its main
components. A feedback-enhanced fuzzing loop is included
in our method to aid in the development of new inputs from
the most recently added seed, which is aimed for deeper
vulnerabilities. Furthermore, our system analyses the attributes
of each seed in the seed set and ranks them using a two-level
scheduling based on feedback from the emulation target.

A. Workflow

The workflow of our system is shown in Algorithn{I]

To begin, we use a crawler to capture messages in commu-
nication. We put each message in the seed set and send it to
the emulated target for a first run, as illustrated in lines 3-4. To
evaluate this seed, our feedback-enhanced monitor (II-B)) will
collect operating data such as system calls and basic block
coverage. Once completed, this seed will be inserted into our
two-level scheduler based on its privilege and score.
Then there’s our fuzzing loop, which is depicted in lines 8-19.
Every time, a more privileged seed is selected from the queue
and mutated to generate more inputs using various mutation
policies (II-D). We send each input to the target emulated
device and capture its operating data. If it adds new block
coverage, we preserve it as a new seed in the seed set, as
indicated in lines 12-14. And once a vulnerability is discovered
(II-B), we will save it into our vulnerability report.

Algorithm 1 Workfow of our system.

Require: Captured messages, msgs;
Ensure: Discovered Vulnerabilities, vuls;
1: Initialize seed set seeds, block coverage cov, secondary
queue queue and discovered vulnerabilities vuls;

2: for each msg in msgs do

3: seeds.append(msg)

4: privilege, score, cov_inc, bug=M onitor_run(msg)
5: cov.append(cov_inc)

6: queue.insert(privilege, score)

7: end for

8: while queue is not NULL do

9: seed=Choose(queue)

10: input=Mutate(seed)

11: privilege, score, cov_inc, bug=M onitor_run(input)
12: if cov_inc not in cov then

13: seeds.append(input)

14: queue.insert(privilege, score)

15: end if

16: if bug then

17: vuls.append(bug)

18: end if

9: end while
20: return vuls;

—_

755

B. Feedback-enhanced Monitor

With the help of emulation technology, feedback-enhanced
monitor is able to collect operating information with the
emulated targets. It mainly collects two types of information:
system calls and executed basic block (BB) coverage. As for
the system calls, the monitor modifies the driver in Linux
kernel, which will hook the system calls we want to collect.
And for BB coverage, we utilize the QEMU plugin to trace
the ids of the executed basic blocks.

Each time a seed or new-generated input is send to the
target emulated devices, this Monitor is invoked to trace the
operating information on it. Providing the detected informa-
tion, feedback-enhanced monitor is responsible for the three
following functions:

First and foremost, it gathers executed BB coverage in order
to update the seed set. After a newly-generated test case brings
new BB coverage, we will add it to the seed set and further
push it into the two-level scheduler.

Second, it checks the emulated device’s status. Monitor
drawback the status of the emulated device to its initial state
by using snapshots once there is no response or the target’s
service is closed.

Last but not least, monitor identifies the vulnerabilities and
generates a report. Buffer Overflow (BO), Command Injection
(CD), and Cross-Site Scripting (XSS) are the three types of
vulnerabilities it can identify (XSS). To detect BO, Monitor
examines the log information created by the Emulator, which
records the memory error. Monitor detects the file-open system
calls for CI, which creates a “ci file” if the attacking payload
is successfully injected. Monitor also examines Emulator’s
response messages for injected scripts, which indicates that
a XSS vulnerability has been triggered.

C. Two-level Scheduler

Given the operating information, the two-level scheduler
will push a seed or an input to queues based on the following
rule:

a) : For each input we instrument each field with a
random string, after sending this new input to the target,
we utilize monitor to obtain information on the system call
do_execve, as well as its argument strings. Once we discover
that the instrumented random strings are in the do_execve
argument strings, we presume that the privilege of this input is
1, indicating that the input is subject to less stringent scrutiny
and is more likely to cause vulnerabilities.

b) : In the meantime, the monitor will track the BB
coverage as an input is executed. If the input is inside the
initial seeds, regardless of whether it increases BB coverage,
it will be assigned to two-level queues based on its privilege.
And for generated input, only when it increases BB coverage,
it will be added to the seed set as a new seed and pushed into
two-level queues based on its privilege.

c) : If the seed has privilege 1, it will be added to Level
1 queue. Otherwise, it will be added to the Level 2 queue.
We believe that the more BB coverage traversed, the more
probable it is that the seed will cause vulnerabilities. And, as

the number of fields in the seed decreases, so does the amount
of time spent in the fuzzing loop. As a result, the seeds are
ranked according to the following rule:

inc_kernel + inc_program

(D

S =
core field_num

where inc_kernel denotes the increased kernel BB coverage,
inc_program denotes the increased program BB coverage and
field_num denotes the number of fields in the body this
message.

D. Fuzzing Policy

The higher scored seeds are selected first from the Level 1
queue during the fuzzing process. When the Level 1 line is
empty, the better scoring seeds are selected from the Level 2
queue. After a seed is selected, we will apply the following
fuzzing strategies to each field in the seed:

a) Changing string lengths and number numerical values
of numbers for Buffer Overflow (BO) access: To trigger
potential BO vulnerabilities, we add a thousand characters
“A” to the string or change the original number to a very big
amount.

b) Injecting attacking payloads for Cross-Site Scripting
(XSS) and Command Injection (CI) access: To trigger poten-
tial CI or XSS vulnerabilities, we used attacker payloads such
as ;/test, <script>alert(“XSS”);</script>.

¢) Modifying the value for more complex operational
logic: We modify the value of the string field to “Yes”, “No”,
or other spliced letters, and the value of the numeric field to
“0”, “1”, and minus. This method is used to generate inputs
that will result in more BB coverage being executed.

III. IMPLEMENTATION AND EVALUATION

In this section, we present the evaluation of our approach
and the results from our experiment. To evaluate the effective-
ness of finding vulnerabilities, we implement our system and
compare it with a state-of-the-art IoT fuzzer SIoTFuzzer on a
set of five Linux-based firmwares.

A. System implementation

We have implemented our system using python and C lan-
guages. In message preparing phrase, we employ mitmproxy
[12] and selenium [13]] to traverse and collecting communi-
cating messages. In the feedback-enhanced monitor, we patch
the Linux kernel [14] to hook the system calls and develop
a PANDA [1I5] plugin to trace the running BB coverage
information in the QEMU. In the fuzzing phrase, we build
our system on the top of SIoTFuzzer [9].

TABLE I
SUMMARY OF FIRMWARES UNDER TESTING

Type Vender Model Version

Trendnet | tew-652BRP 3.04b01

Router Dlipk DSL-3782 EUI.01
DLink DAP-2555 REVAI1.20
Netgear | WNDR3700 | v2-1.0.1.14
IP Camera | Trendnet IP110wn v2-1.2.2.68

756

TABLE II
STATISTICS ON FUZZING — DISCOVERED VULNERABILITIES AND TEST TIME

Exploited ID Type Vendor Model SloTFuzzer | Our system
CVE-2018-19240 BO Trendnet IP110wn 3h23min 1h41min
CVE-2019-11400 BO Trendnet | tew-652BRP 18min52s 1h52min
CVE-2019-7298 BO DLink DSL-3782 17h41min 6min38s

Unknownl BO DLink DSL-3782 NA 3h16min
CVE-2018-17990 CI DLink DSL-3782 9h20min 5h52min
CVE-2019-11399 CI Trendnet | tew-652BRP 7h11min 1h2min

Unknown?2 CI Netgear | WNDR3700 NA 3minl3s

Unknown3 CI Netgear | WNDR3700 NA 4h8min
CVE-2018-17989 | XSS DLink DSL-3782 9hS51min 6h23min
CVE-2021-31655 XSS Trendnet IP110wn NA 1min3s

Unknown4 XSS DLink DAP-2555 NA 3min39s

Unknown5 XSS DLink DAP-2555 NA 5h8min

B. Experiment setup

Target: We collected five Linux-based IoT firmwares in-
cluding four routers and an IP camera and utilize FirmAE
[11] to configure these firmwares. The basic information of
testing firmwares is shown in Tabldl]

Testing Environment: We conducted our evaluation in a
virtual machine with an Intel Core 19 quad-core 3.6 GHz CPU
and 8G RAM. The operating system is Ubuntu 18.04.

Before the fuzzing test, we emulated the testing firmwares
and utilize a crawler to traverse their web applications. After
the crawling, we get the communication messages and delete
the duplicated messages, which are used as initial seeds.

Then we feed these seeds to our system as well as SIoT-
Fuzzer and run them within 24 hours.

C. Fuzzing Results

After 24-hour running, the discovered vulnerabilities and
their times of discovered are listed in TableIll

Number of vulnerabilities: From the result, we can see
that our system discovered 12 vulnerabilities, including 4
BO, 4 CI, and 4 XSS vulnerabilities, whereas SIoTFuzzer
only discovered 6. With the help of the feedback-enhanced
monitor, which updates the seed set to explore deeper logics
of emulated devices, our system was able to find more 1-day
vulnerabilities.

Time for finding: Our system can find a vulnerability faster
than SIoTFuzzer except for CVE-2019-11400. In this case,
as SloTFuzzer fuzzes the initial seeds in the order of the
messages’ alphabetical order and it fuzzes the valuable seed
at firstly by coincidence. In other cases, our system takes a
significant lead over SIoTFuzzer with the help of two-level
scheduler.

0-day vulnerabilities: We discovered 6 0-day vulnera-
bilities within 6 hours, with a minimum time of less than
four minutes. All of these vulnerabilities were reported to
the manufacturers, one of which was assigned a CVE ID
(CVE-2021-31655), and three of which were mentioned in
the security announcement [16].

IV. RELATED WORK

A. Dynamic testing on IoT devices

Chen et al. [[17] proposed Firmadyne, a large-scale full-
system emulation platform for Linux-based firmware, to ad-
dress the hardware dependence problem of dynamic testing
such as fuzzing. By altering the kernel and drivers to enable
hardware support, full-system emulation can be achieved. 9486
firmwares were decompressed and 74 exploit scripts were
performed on the emulated firmwares in this research. Costin
et al. [18] built a system on Firmadyne to evaluate the web
interfaces of IoT devices and discovered 45 undiscovered
vulnerabilities. Zaddach et al. developed Avatar [19] to route
I/0O accesses from Emulator to physical devices in order to
obtain running data in physical devices.

B. Firmware fuzzing

Chen et al. [4] combines APPs of target IoT devices and the
fuzzing technology. Rich protocol information such as URLs,
commands, and encryption techniques will be evaluated when
reversing an APP, which will assist develop valid test cases to
find flaws. Finally, it discovered 15 different forms of memory
corruption vulnerabilities in eight different devices. However,
this research was limited to IoT devices running APPs and
was hampered by physical device throughput. To combine
the advantages of system emulation and the user emulation,
Firm-AFL [6] proposed augmented process emulation, which
greatly accelerates the discovery of vulnerabilities in system
emulation. Prashast Srivastava et al. implemented FirmFuzz
[7], an automated fuzzing framework which detects vulnera-
bilities in target firmwares on the base of system introspection.
SIoTFuzzer [9] focus on stateful seed generation by analyzing
the initial inputs.

V. CONCLUSION

In this paper, we present an efficient feedback-enhanced
fuzzing scheme for Linux-based firmwares. To overcome prob-
lem of the fixed seed set that prevent fuzzing from discovering
deep vulnerabilities, we design a feedback-enhanced monitor
to collect operating data and select new seeds for further
fuzzing. In addition. we propose a two-level scheduler ranking

757

seeds based on their running properties to speed up vulnera-
bilities finding. In our evaluation, our system could find more
vulnerabilities than the state-of-the-art IoT fuzzer SloTFuzzer
and eventually discovered 5 unknown vulnerabilities.

[4]

[5]

[6]

[7]

[8]

REFERENCES

R. Statista, “Internet of things-number of connected devices
worldwide 2015-2025,” Statista Research Department. statista.
com/statistics/471264/iot-numberof-connected-devices-worldwide, 2019.
C. Chen, B. Cui, J. Ma, R. Wu, J. Guo, and W. Liu, “A systematic review
of fuzzing techniques,” Computers & Security, pp. 118-137, 2018.

B. Feng, A. Mera, and L. Lu, “P2im: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling (extended
version),” 2019.

J. Chen, W. Diao, Q. Zhao, C. Zuo, and K. Zhang, “Iotfuzzer: Discover-
ing memory corruptions in iot through app-based fuzzing,” in Network
and Distributed System Security Symposium, 2018.

B. Yu, P. Wang, T. Yue, and Y. Tang, “Poster: Fuzzing iot firmware
via multi-stage message generation,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019,
pp. 2525-2527.

Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “Firm-afl:
High-throughput greybox fuzzing of iot firmware via augmented process
emulation,” in USENIX Security Symposium, 2019.

Srivastava, H. Peng, J. Li, H. Okhravi, H. Shrobe, and M. Payer, “Firm-
fuzz: Automated iot firmware introspection and analysis,” Proceedings
of the 2nd International ACM Workshop on Security and Privacy for the
Internet-of-Things, 2019.

E. Wang, B. Wang, W. Xie, Z. Wang, and T. Yue, “Ewvhunter: Grey-box
fuzzing with knowledge guide on embedded web front-ends,” Applied
Sciences, vol. 10, no. 11, p. 4015, 2020.

758

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

H. Zhang, K. Lu, X. Zhou, Q. Yin, P. Wang, and T. Yue, “Siotfuzzer:
Fuzzing web interface in iot firmware via stateful message generation,”
Applied Sciences, vol. 11, no. 7, p. 3120, 2021.

Binwalk, “binwalk: Firmware
https://github.com/ReFirmLabs/binwalk/, 2015.

M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “Firmae:
Towards large-scale emulation of iot firmware for dynamic analysis,”
Annual Computer Security Applications Conference, 2020.

https

analysis tool,”

Mitmproxy, “mitmproxy - an interactive

https://mitmproxy.org/, 2021.

proxy,”

C. Mcmahon, “History of a large test automation project using sele-
nium,” in Agile Conference, 2009.
A. Mavinakayanahalli, P. Panchamukhi, J. Keniston, A. Keshavamurthy,

and M. Hiramatsu, “Probing the guts of kprobes,” in Linux Symposium,
vol. 6, 2006, p. 5.

B. F. Dolangavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan,
“Repeatable reverse engineering for the greater good with panda,”
Computer Science, 2014,

D-Link, “Support announcements,” https://supportannouncement.us.
dlink.com/announcement/publication.aspx ?name=SAP10232, 2021.

D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards automated
dynamic analysis for linux-based embedded firmware,” in NDSS, 2016.

A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: A case study on embedded web interfaces,” Pro-
ceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, 2016.

M. Muench, D. Nisi, A. Francillon, and D. Balzarotti, “Avatar 2: A
multi-target orchestration platform,” in Proc. Workshop Binary Anal.
Res.(Colocated NDSS Symp.), vol. 18, 2018, pp. 1-11.

https://supportannouncement.us.dlink.com/announcement/publication.aspx?name=SAP10232
https://supportannouncement.us.dlink.com/announcement/publication.aspx?name=SAP10232

