
Hybrid Way of Code Coverage Tracking in Fuzz

Hanyi Nie, Xu Zhou and Junnan Zhang
 National University of Defense Technology

Changsha, Hunan Province, China
{niehanyi17 & zhouxu & zhangjunnan12}@nudt.edu.cn

Abstract—In software testing, code coverage can be one of the
major metrics for evaluating the effectiveness of a test. Among all
existing software testing methods, coverage-guided fuzzing is
widely used nowadays, but the way it uses to obtain path
coverage is mostly based on code instrumentation or emulation.
However, a tester cannot take targeted measures if have no
information about where the progress of the test is stuck. This
paper proposes a method to record precise code coverage in a
hybrid way which combining static program analysis and
dynamic tracing. This work is on the basis of previous work that
leverages hardware mechanism (Intel Processor Trace) to collect
branch information and implement a tool called CovFuzz. Our
approach can achieve an accurate coverage track that can
reversibly find the corresponding source code or assembly code
to assist program analysis and break through the bottleneck
when the progress of software testing gets stuck. Our
experiments show that the code coverage can be improved with
the help of accurate path information.

Keywords-fuzz; code coverage; Intel PT; software testing

I. INTRODUCTION
Software security is getting more and more attention due to

the wide use of software, even little mistake like a wrong letter
can make huge lost for users, it’s really necessary to test
software thoroughly and find vulnerability before it causes real
problems. Software testing techniques can be classified
according to the knowledge acquired from program, and they
are white-box, grey-box and black-box testing separately. The
black-box testing knows nothing about the architecture of
target program. The tester cannot control program process but
to change inputs to observe the differences of outputs to
evaluate the effect of execution. In the white-box testing, all
the source code information needs to be obtained first, and the
code is directly audited by manual or automated tools like
pattern matching to detect vulnerability thoroughly, which
often causes high overhead. The grey-box testing considers the
internal properties of programs while maintaining the
simplicity of black-box to make a compromise between cost
and accuracy. The coverage-guided fuzzing is a famous one in
grey-box testing and uses code coverage information to guide
the way to generate input.

One of the most state-of-the-art tools of coverage-guided
fuzzing is American Fuzzy Lop(AFL) [1] , which will collect

some simple program execution information to decide which
new inputs have more potential to find new branches and
would be keep for further mutated. But this kind of path record
is in a tough way that cannot reflect the precise state of
program execution. However, when the test has been executed
to a certain extent, it may be difficult to find a new path, and
the full progress may be stuck. In this situation, continuing the
test would not bring anything useful. But with some more fine-
grained coverage information, things will be much more
different. One can directly search for the branch which
connects executed areas and never executed areas in program
and generates an input directly based on the condition to
execute the branch to breakthrough this bottleneck.

However, it would be impossible for AFL to record such
precise path because its way to track code coverage is to
instrument a random number in each basic block when
compiling the source code, and to calculate the hash value of
branch between two basic blocks like A->B as (1). But there
may be collisions due to the limited random range, and the
greater size of the program is, the higher possibility of
collisions becomes[11]. Therefore, for one thing, the hash
value for a branch may not be unique due to the collisions. For
another, testers cannot find out which part in the program is
corresponding as all we can get is how many times a hash
value has been hit in all executions.

cur ⊕ (prev ≫ 1) (1)

There is a way to avoid the collision due to the random
mark of basic block(BB) and keep the relation between BB and
its mark by using Intel Processor Trace to get feedback. Intel
PT is a new hardware mechanism of Intel Processor[3] that can
trace the accurate address of every basic block and detailed
control flow information. kAFL uses it to fuzz OS kernels [4]
and PTfuzz [2] uses the address of instruction to mark BB
instead of random number. But they keep the other mechanism
of AFL and the collision in the calculation of branch’s hash
value cannot be avoided and the relation between BB and mark
get lost in the final output.

In summary, this paper makes the following contributions.

• We propose a hardware-based program control flow
tracking method to accurately record the code coverage

This work is partially supported by the The National Key Research and
Development Program of China (2016YFB0200401)， by program for New
Century Excellent Talents in University，by National High-level Personnel for
Defense Technology Program (2017-JCJQ-ZQ-013) , by the HUNAN Province
Science Foundation 2017RS3045.

status of the tested program, to completely avoid
collisions and loss of information.

• We propose a method to record the execution status of
branches in a hybrid way which combines static
program analysis and dynamic execution information.
The method can reversibly locate the related basic
blocks in the corresponding program source code or
assembly code according to the collected information.

• We implement a tool called CovFuzz and conduct
experiments to prove that this accurate information
record can assist the program analysis when the fuzz
process or other kinds of test tool are stuck to quickly
break through the bottleneck that block the code
exploring and improve code coverage.

II. BACKGROUND AND RELATED WORK

A. Coverage-guided Fuzz
Since first developed in early 1990s, fuzzing has evolved

much and achieved great success in vulnerability detect. One of
the most popular fuzz is coverage-guided fuzz, which can get
simple coverage information by using some light weight
instrumentation. AFL is a very efficient coverage-guided fuzz
tool that enlighten many other works. The way it uses to record
coverage information is by setting up a 64KB shared memory
called bitmap [4]. Each byte in the bitmap represents a branch,
which is updated according to the hash value calculated in (1).
The limitation of bitmap size means the number randomly
instrumented to basic block should be within the range of
「0,64k」. The work process of AFL shows in Fig. 1. The first
step is using the gcc offered by AFL to compile and instrument
the source code [3], then mutate the seeds to generate as many
as testcases and collect coverage information when executing
them. For testcases that can cover new branches will be added
to seed pool for further mutation. Most of the improvement
works are focused on using code coverage information.
AFLFast [7]and Fairfuzz [8] have used the frequency at which
the branch is hit, make code that are hard to be executed get
more attention. By using coverage, we could also implement a
directed fuzz that concentrate to some specified code. The
papers [5] and [6] considered the distance between basic blocks
to modify the direction of coverage exploration.

However, for programs without source code or cannot be
instrumented like OS kernel, AFL would lose its property of
coverage-guided and work blind, cause loss of efficiency. The
paper[10] first introduced a feedback mechanism based on
hardware by using Intel PT to collect execution information
and achieved AFL fuzz in the OS kernel. Then we will briefly
introduce PT.

B. Intel Processor Trace
Intel PT is a part of Intel Architecture that offers control

flow tracing relying on hardware facilities with low overhead.
It hardly has an influence on the performance of software being
traced. Instructions in program that could change the program
flow are called Change of Flow Instructions (COFI). The target
of where the flow turn to is in stored instruction or in registers.

Figure 1. The work process of AFL

According to the addressing mode, COFI are divided in the
following three categories:

1) Direct transfer COFI: The target is an IP that embedded
in the instruction bytes.

2) Indirect transfer COFI: The IP is stored in registers or
memory location.

3) Far transfer COFI: Operations that change the flow are
far jumps, like exceptions, interrupts or traps.

To handle different kinds of COFI, the PT will collect
execution information in different types of data packets. The
most relevant types to our works are Taken Not-Taken (TNT)
packets and Target IP (TIP) packets. TNT packets are designed
to track the direction of the direct conditional branch by record
whether the jump is Taken or Not-Taken. If taken, combining
with the IP embedded in instruction, we could know whether
the target or the next instruction in order would be executed.
TIP packets record all the IP of indirect branches or events that
can’t get target IP from assembly code.

PTfuzz is a grey-box fuzzing approach which leverages PT
to collect branch information and uses the start address of a
COFI to represent a basic block instead of instrumentation. It
achieves great performance improvement compared to AFL
extended with QEMU in the binary-only test. In this paper, we
propose a tool based on PTfuzz to further use the information
collected in PT and make it possible for testers to have a
detailed understanding of execution status.

III. DESIGN
In this section, we will introduce our method and how it

assists fuzzing or other kinds of software testing. There are two
main parts of CovFuzz: one is fuzz and the other is coverage
track. Since the fuzz part is almost the same as PTfuzz, we will
introduce how the coverage track works. For the different types
and characteristics of instructions and in order to get all the
execution information completely, we use a hybrid method
combining hybrid static analysis and dynamic tracking to get
the accurate coverage.

A. Static Anaysis
In assembly code, instructions have no influence on control

flow means that they won’t cause jump and would be executed
in order until meeting a COFI instruction that will change the
control flow. A basic block is composed of a COFI with all the
non-COFI instructions before it and represented by the address
of the first instruction in coverage. Those basic blocks are
classified by the COFI, and the number of possible branches is
calculated according to the type.

As the number of COFI in different programs differs a lot, a
structure with fixed size cannot be worked well. The size
would either so large as to be a waste of space or too small to
record completely. The size of HashMap is dynamically
variable, fitting for recording the coverage information and
flexible to adapt to all programs. The initial HashMap is build
based on the static analysis of tested programs. For all basic
blocks, each has a corresponding structure containing jump
information including TargetEdge and NextEdge. Then the
structure would be added to HashMap with the address of the
first instruction to be its key value. Different types of COFI
instructions would have different number of branches.

1) Direct jump branch: For conditional ones, there are two
possible branches from it, we record the id of next basic block
as NextEdge and the operand embedded in COFI instruction as
TargetEdge. The total edges plus 2 accordingly. For uncon-
ditional ones, it would directly jump to the target edge,
therefore the total edges plus 1 and just set TargetEdge.

2) Indirect jump branch: As the target address is unknow,
we need to set NextEdge and record the target while in
execution.

3) Far jump: Target is unknown and next address is
unreachable. The direction would be in register or memory.

Once a COFI instruction is being decoded, the structure of
this basic block is added to HashMap. The HashMap would be
updated in execution to record coverage. The dynamic part is
described in the next part.

B. Dynamic Tracing
To record the code coverage in testing, the HashMap

should be updated in a dynamic way. However, the overhead is
much higher when updating a HashMap, which definitely has a
side effect on the performance of fuzzing. To balance accuracy
and efficiency, the HashMap is only updated when the seed is
discovered. The speed of fuzzing is very fast and could run
hundreds of testcases each second, the proportion of seeds is so
small that such a low frequency of updating HashMap would
not have significant influence.

When starting a fuzz, a seed is always necessary and dry-
run first to get initial information. Only a newly explored seed
could have another run to update HashMap. When a basic
block is hit by the seed, the fuzzer would check the node of the
last basic block to see whether the address of the current one is
in the node. If it is, update its hit number. Otherwise it would
be called Hidden edges that are come from indirect jump or far
transfer instructions and be stored in a link list of hidden edges.
Information of hidden edges could only be known when being
executed.

The way used by AFL to record coverage is completely
dynamic without any prior knowledge like how many branches
are exist, therefore testers cannot know how many branches are
waiting to be explored. However, a control flow graph(CFG)
build based on static program analysis will miss those hidden
edges make the path be incomplete. For example, function A
call function B are shown in Fig. 2, the control flow should be
basic block chain 1->2->4->5->4. Actually, this chain would
be scattered in the static analysis because the last instruction of

Figure 2. Example of Basic Blocks Structure in a Function Call

TABLE I. RESULTS OF RUNING TEST CASE IN COVFUZZ AND AFL

tool Covered
seeds

Covered
branches

Covered
condition

New
seeds

New
branches

CovFuzz 45 55 2 11 7
AFL 16 48 1 6 8

function B would be ‘ret’ and the target address can only get
from an execution stack. Thus, the only way to collect
completely code coverage is by combining both static analysis
with dynamic tracing.

C. Case Study
To illustrate how CovFuzz works, we write a test program

and run it on AFL and CovFuzz with the same seed. The test
program is simple and reads text from .txt file to see if there are
strings compared to “0”, “ab”, “crash”. Both two tools get
stuck after one hour and cannot make any progress in two
hours. The detail is shown in Table. 1. The first two columns
mean the number of the seeds and branches found when each
tool is stuck respectively. The third column lists the number of
conditions that have been satisfied. We analyze the coverage
information about the missed branches and compare them with
the instructions in assembly code. The result shows that in AFL
only “0” has been satisfied while CovFuzz only misses “crash”.
Then we manually generate a testcase that meet the criteria.
The last two columns are the number of the newly found seeds
and branches. This test program is very small with dozens of
code lines in total, so the cost of manually analysis is much
lower than running fuzz for countless hours. To verify the
availability of our work, we test it on some real-world program
in the next section.

IV. EVALUATION
In this section, we will discuss the result of using our tools

on real-world programs. We only test it on our work because
the major contribution of the work is accurate coverage and its
help in testing. This tool is based on PTfuzz and the previous
work has proved that PTfuzz has a relatively higher code
coverage than AFL[2]. Furthermore, we have illustrated how
this work could help other test tools in the last section by
comparing our tool with AFL.

We chose four binaries to test, including djpeg and jpegtran
from libjpeg 9c, pngfix from libpng 1.6.35 and tiffinfo from
libtiff 4.0.9. We tested them all for at least 24 hours. Due to the
constraints of computation resources and time, we only waited
three hours or a little bit more after the progress be struck if the
running time was out of 24 hours. The results are shown in
Table. II. The first column lists the number of visible edges in
the binary, we could get it after building the HashMap at the

TABLE II. RESULTS OF RUNING REAL WORLD PROGRAM AND COVERAGE IMPROVEMENT

Target
binary

Visible
branches

Covered
seeds

Covered
branches

Time with no
find

Check points No.1 newly
covered branches

No.2 newly
covered branches

No.3 newly
covered branches

djpeg 811 56 109 4 hours 3 47 19 65
jpegtran 1367 26 84 3 hours 3 56 50 87
pngfix 1432 276 751 3 hours 3 14 19 24
tiffinfo 453 12 28 15hours 3 5 38 68

begin of the test. The next three columns contain information
about execution before human intervention. The covered seeds
and covered branches represent the number of seeds and
branches found before stuck. The covered branch excludes
hidden edges. Time with no find means how long has the
progress been in stuck. After a test to binary gets stuck for
hours, we would analyze the coverage information got from
CovFuzz to see branches that are never been hit during the test.
Normally, the number varies by binary size but would be much
more than a hundred. We randomly chose three branches that
connect reachable basic block and untouched one as
breakpoints to overcome the bottleneck for each binary.

We selected and analyzed 12 breakpoints to figure out why
those branches are never been hit in total. After associated the
address with the assembly code, we observed that arguments
set in the command line or the magic number to mark a special
kind of inputs could hinder most testings to go deeper. We
modified the inputs and changed the argument value according
to the condition that blocks the corresponding breakpoint to see
the coverage improvement. For each breakpoint, we only run it
for 2 hours due to the time limitation. Then we manually
counted the newly found branches and listed them in the last
three columns in Table. II. The findings of solving different
bottlenecks are listed separately with the serial number.
However, the coverage of using different arguments could not
be compared directly in bitmap. Our work shows exactly which
branch is missed. Testers could compare the coverage of
different tests and remove duplicate ones to get the coverage in
total.The results of the experiment show that different ways to
modify input or argument take different improvement.

Then we analyzed the CFG build according to information
in HashMap, found out that changes of arguments could take
much improvement. However, there are still missed branches
even after trying every argument. Some branches could only be
hit when under the premise of a specific group of arguments.
We could get all the valuable sets by solving the breakpoints.
For example, in the initial test of tiffinfo, there are dozens of
basic blocks never been touched. We located those basic blocks
and found that they belong to a same function which would
only be called when three specific arguments are used together.
We could hardly find this set by guessing.

V. DISCUSSION
The foremost limitation of CovFuzz is the fact that we do

not know which breakpoint is capable of exploring more
branches than others. The resource should be given to where
we can gain more to discover more untouched code within
limit time. This inspires us about future work to design an
algorithm that could prioritize those branches lead to more

unexplored branches and report them to testers. Another
limitation of our work is that testers are hard to figure out what
blocks the test when compiling the target program without
using the -Wall argument. The magic numbers are difficult to
be discovered when completely depending on assembly code.

VI. CONCLUSION
In this paper, we present CovFuzz, a binary compatible

fuzz-testing tool featuring accurate coverage information
collection capability. We analyze the drawbacks of previous
works on coverage accuracy and demonstrate that accurate path
trace could significantly help path exploration. Our work uses a
hybrid way that combines static analysis with dynamic path
tracing to collect code coverage and implements precise path
coverage tracking by taking full advantage of Intel Processor
Trace. We test it on a testcase and four real-world programs,
proving that our work can help other test tools to cover more
code.

REFERENCES
[1] M. Zalewski. American Fuzzy Lop (AFL) Fuzzer. Accessed: Jun. 1,

2019. [Online]. Available: http://lcamtuf.coredump.cx/afl
[2] Zhang G, Zhou X, Luo Y, Wu X. “PTfuzz: Guided Fuzzing with

Processor Trace Feedback,”IEEE Access,vol. 6, 2018, pp.37302-37313.
[3] IntelCorporation.IntelProcessorTrace.Accessed:May.21,2019.[Online].

Available: https://software.intel.com/en-us/blogs/2013/09/18/processor-
tracing

[4] M. Zalewski. American Fuzzy Lop (AFL) Fuzzer-Technical Details.
Accessed: Jan. 1, 2018. [Online]. Available: http://lcamtuf.coredump.cx/
afl/technical_details.txt

[5] M.Böhme,V.-T.Pham,M.-D.Nguyen,andA.Roychoudhury,‘‘Directed
greybox fuzzing,’’ in Proc. 24th ACM Conf. Comput. Commun. Secur.
(CCS), 2017, pp. 1–16.

[6] Chen, H., Xue, Y., Li, Y., Chen, B., Xie, X., Wu, X., & Liu, Y. (2018,
October). “Hawkeye: towards a desired directed grey-box fuzzer,”
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security.ACM,2018, pp. 2095-2108.

[7] Lemieux C, Sen K. “Fairfuzz: A targeted mutation strategy for
increasing greybox fuzz testing coverage,”In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software
Engineering. ACM, 2018, pp.475-485.

[8] M. Böhme, V.-T. Pham, and A. Roychoudhury, ‘‘Coverage-based
greybox fuzzing as Markov chain,’’ in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2016, pp. 1032–1043.

[9] Zhao, L., Duan, Y., Yin, H., Xuan, J. “Send Hardest Problems My Way:
Probabilistic Path Prioritization for Hybrid Fuzzing,” In Proceedings of
the NDSS, 2019,pp.1-1.

[10] Schumilo S, Aschermann C, Gawlik R, et al. “kAFL: Hardware-Assisted
Feedback Fuzzing for {OS} Kernels,” In Proceedings of the 26th
USENIX Security Symposium Security, 2017, pp.167-182.

[11] Gan, Shuitao, et al. "CollAFL: Path sensitive fuzzing." 2018 IEEE
Symposium on Security and Privacy (SP). IEEE, 2018，pp.679-696.

