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Abstract—In software testing, code coverage can be one of the 
major metrics for evaluating the effectiveness of a test. Among all 
existing software testing methods, coverage-guided fuzzing is 
widely used nowadays, but the way it uses to obtain path 
coverage is mostly based on code instrumentation or emulation. 
However, a tester cannot take targeted measures if have no 
information about where the progress of the test is stuck. This 
paper proposes a method to record precise code coverage in a 
hybrid way which combining static program analysis and 
dynamic tracing. This work is on the basis of previous work that 
leverages hardware mechanism (Intel Processor Trace) to collect 
branch information and implement a tool called CovFuzz. Our 
approach can achieve an accurate coverage track that can 
reversibly find the corresponding source code or assembly code 
to assist program analysis and break through the bottleneck 
when the progress of software testing gets stuck. Our 
experiments show that the code coverage can be improved with 
the help of accurate path information. 
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I.  INTRODUCTION  
Software security is getting more and more attention due to 

the wide use of software, even little mistake like a wrong letter 
can make huge lost for users, it’s really necessary to test 
software thoroughly and find vulnerability before it causes real 
problems. Software testing techniques can be classified 
according to the knowledge acquired from program, and they 
are white-box, grey-box and black-box testing separately. The 
black-box testing knows nothing about the architecture of 
target program. The tester cannot control program process but 
to change inputs to observe the differences of outputs to 
evaluate the effect of execution. In the white-box testing, all 
the source code information needs to be obtained first, and the 
code is directly audited by manual or automated tools like 
pattern matching to detect vulnerability thoroughly, which 
often causes high overhead. The grey-box testing considers the 
internal properties of programs while maintaining the 
simplicity of black-box to make a compromise between cost 
and accuracy. The coverage-guided fuzzing is a famous one in 
grey-box testing and uses code coverage information to guide 
the way to generate input. 

One of the most state-of-the-art tools of coverage-guided 
fuzzing is American Fuzzy Lop(AFL) [1] , which will collect 

some simple program execution information to decide which 
new inputs have more potential to find new branches and 
would be keep for further mutated. But this kind of path record 
is in a tough way that cannot reflect the precise state of 
program execution. However, when the test has been executed 
to a certain extent, it may be difficult to find a new path, and 
the full progress may be stuck. In this situation, continuing the 
test would not bring anything useful. But with some more fine-
grained coverage information, things will be much more 
different. One can directly search for the branch which 
connects executed areas and never executed areas in program 
and generates an input directly based on the condition to 
execute the branch to breakthrough this bottleneck.  

However, it would be impossible for AFL to record such 
precise path because its way to track code coverage is to 
instrument a random number in each basic block when 
compiling the source code, and to calculate the hash value of 
branch between two basic blocks like A->B as (1). But there 
may be collisions due to the limited random range, and the 
greater size of the program is, the higher possibility of 
collisions becomes[11]. Therefore, for one thing, the hash 
value for a branch may not be unique due to the collisions. For 
another, testers cannot find out which part in the program is 
corresponding as all we can get is how many times a hash 
value has been hit in all executions. 

cur ⊕ (prev ≫ 1)                             (1) 

There is a way to avoid the collision due to the random 
mark of basic block(BB) and keep the relation between BB and 
its mark by using Intel Processor Trace to get feedback. Intel 
PT is a new hardware mechanism of Intel Processor[3] that can 
trace the accurate address of every basic block and detailed 
control flow information. kAFL uses it to fuzz OS kernels [4] 
and PTfuzz [2] uses the address of instruction to mark BB 
instead of  random number. But they keep the other mechanism 
of AFL and the collision in the calculation of branch’s hash 
value cannot be avoided and the relation between BB and mark 
get lost in the final output.  

In summary, this paper makes the following contributions. 

• We propose a hardware-based program control flow 
tracking method to accurately record the code coverage 
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status of the tested program, to completely avoid 
collisions and loss of information. 

• We propose a method to record the execution status of 
branches in a hybrid way which combines static 
program analysis and dynamic execution information. 
The method can reversibly locate the related basic 
blocks in the corresponding program source code or 
assembly code according to the collected information. 

• We implement a tool called CovFuzz and conduct 
experiments to prove that this accurate information 
record can assist the program analysis when the fuzz 
process or other kinds of test tool are stuck to quickly 
break through the bottleneck that block the code 
exploring and improve code coverage. 

II. BACKGROUND AND RELATED WORK 

A. Coverage-guided Fuzz  
Since first developed in early 1990s, fuzzing has evolved 

much and achieved great success in vulnerability detect. One of 
the most popular fuzz is coverage-guided fuzz, which can get 
simple coverage information by using some light weight 
instrumentation. AFL is a very efficient coverage-guided fuzz 
tool that enlighten many other works. The way it uses to record 
coverage information is by setting up a 64KB shared memory 
called bitmap [4]. Each byte in the bitmap represents a branch, 
which is updated according to the hash value calculated in (1). 
The limitation of bitmap size means the number randomly 
instrumented to basic block should be within the range of
「0,64k」. The work process of AFL shows in Fig. 1. The first 
step is using the gcc offered by AFL to compile and instrument 
the source code [3], then mutate the seeds to generate as many 
as testcases and collect coverage information when executing 
them. For testcases that can cover new branches will be added 
to seed pool for further mutation. Most of the improvement 
works are focused on using code coverage information. 
AFLFast [7]and Fairfuzz [8] have used the frequency at which 
the branch is hit, make code that are hard to be executed get 
more attention. By using coverage, we could also implement a 
directed fuzz that concentrate to some specified code. The 
papers [5] and [6] considered the distance between basic blocks 
to modify the direction of coverage exploration. 

However, for programs without source code or cannot be 
instrumented like OS kernel, AFL would lose its property of 
coverage-guided and work blind, cause loss of efficiency. The 
paper[10] first introduced a feedback mechanism based on 
hardware by using Intel PT to collect execution information 
and achieved AFL fuzz in the OS kernel. Then we will briefly 
introduce PT. 

B. Intel Processor Trace 
Intel PT is a part of Intel Architecture that offers control 

flow tracing relying on hardware facilities with low overhead. 
It hardly has an influence on the performance of software being 
traced. Instructions in program that could change the program 
flow are called Change of Flow Instructions (COFI). The target 
of where the flow turn to is in stored instruction or in registers.   

 

Figure 1.  The work process of AFL 

According to the addressing mode, COFI are divided in the 
following three categories: 

1) Direct transfer COFI: The target is an IP that embedded 
in the instruction bytes. 

2) Indirect transfer COFI: The IP is stored in registers or 
memory location. 

3) Far transfer COFI: Operations that change the flow are 
far jumps, like exceptions, interrupts or traps. 

To handle different kinds of COFI, the PT will collect 
execution information in different types of data packets. The 
most relevant types to our works are Taken Not-Taken (TNT) 
packets and Target IP (TIP) packets. TNT packets are designed 
to track the direction of the direct conditional branch by record 
whether the jump is Taken or Not-Taken. If taken, combining 
with the IP embedded in instruction, we could know whether 
the target or the next instruction in order would be executed. 
TIP packets record all the IP of indirect branches or events that 
can’t get target IP from assembly code.  

PTfuzz is a grey-box fuzzing approach which leverages PT 
to collect branch information and uses the start address of a 
COFI to represent a basic block instead of instrumentation. It 
achieves great performance improvement compared to AFL 
extended with QEMU in the binary-only test. In this paper, we 
propose a tool based on PTfuzz to further use the information 
collected in PT and make it possible for testers to have a 
detailed understanding of execution status. 

III. DESIGN 
In this section, we will introduce our method and how it 

assists fuzzing or other kinds of software testing. There are two 
main parts of CovFuzz: one is fuzz and the other is coverage 
track. Since the fuzz part is almost the same as PTfuzz, we will 
introduce how the coverage track works. For the different types 
and characteristics of instructions and in order to get all the 
execution information completely, we use a hybrid method 
combining hybrid static analysis and dynamic tracking to get 
the accurate coverage. 

A. Static Anaysis 
In assembly code, instructions have no influence on control 

flow means that they won’t cause jump and would be executed 
in order until meeting a COFI instruction that will change the 
control flow. A basic block is composed of a COFI with all the 
non-COFI instructions before it and represented by the address 
of the first instruction in coverage. Those basic blocks are 
classified by the COFI, and the number of possible branches is 
calculated according to the type.  



As the number of COFI in different programs differs a lot, a 
structure with fixed size cannot be worked well. The size  
would either so large as to be a waste of space or too small to 
record completely. The size of HashMap is dynamically 
variable, fitting for recording the coverage information and 
flexible to adapt to all programs. The initial HashMap is build 
based on the static analysis of tested programs. For all basic 
blocks, each has a corresponding structure containing jump 
information including TargetEdge and NextEdge. Then the 
structure would be added to HashMap with the address of the 
first instruction to be its key value. Different types of COFI 
instructions would have different number of branches. 

1) Direct jump branch: For conditional ones, there are two 
possible branches from it, we record the id of next basic block 
as NextEdge and the operand embedded in COFI instruction as 
TargetEdge. The total edges plus 2 accordingly. For uncon-
ditional ones, it would directly jump to the target edge, 
therefore the total edges plus 1 and just set TargetEdge. 

2) Indirect jump branch: As the target address is unknow, 
we need to set NextEdge and record the target while in 
execution. 

3) Far jump: Target is unknown and next address is 
unreachable. The direction would be in register or memory. 

Once a COFI instruction is being decoded, the structure of 
this basic block is added to HashMap. The HashMap would be 
updated in execution to record coverage. The dynamic part is 
described in the next part. 

B.  Dynamic Tracing 
To record the code coverage in testing, the HashMap 

should be updated in a dynamic way. However, the overhead is 
much higher when updating a HashMap, which definitely has a 
side effect on the performance of fuzzing. To balance accuracy 
and efficiency, the HashMap is only updated when the seed is 
discovered. The speed of fuzzing is very fast and could run 
hundreds of testcases each second, the proportion of seeds is so 
small that such a low frequency of updating HashMap would 
not have significant influence.  

When starting a fuzz, a seed is always necessary and dry-
run first to get initial information. Only a newly explored seed 
could have another run to update HashMap. When a basic 
block is hit by the seed, the fuzzer would check the node of the 
last basic block to see whether the address of the current one is 
in the node. If it is, update its hit number. Otherwise it would 
be called Hidden edges that are come from indirect jump or far 
transfer instructions and be stored in a link list of hidden edges. 
Information of hidden edges could only be known when being 
executed.  

The way used by AFL to record coverage is completely 
dynamic without any prior knowledge like how many branches 
are exist, therefore testers cannot know how many branches are 
waiting to be explored. However, a control flow graph(CFG) 
build based on static program analysis will miss those hidden 
edges make the path be incomplete. For example, function A 
call function B are shown in Fig. 2, the control flow should be 
basic block chain 1->2->4->5->4. Actually, this chain would 
be scattered in the static analysis because the last instruction of  

 

Figure 2.  Example of Basic Blocks Structure in a Function Call 

TABLE I.  RESULTS OF RUNING TEST CASE IN COVFUZZ AND AFL 

tool  Covered 
seeds 

Covered 
branches 

Covered 
condition 

New 
seeds 

New 
branches 

CovFuzz 45 55 2 11 7 
AFL 16 48 1 6 8 

function B would be ‘ret’ and the target address can only get 
from an execution stack. Thus, the only way to collect 
completely code coverage is by combining both static analysis 
with dynamic tracing. 

C. Case Study 
To illustrate how CovFuzz works, we write a test program 

and run it on AFL and CovFuzz with the same seed. The test 
program is simple and reads text from .txt file to see if there are 
strings compared to “0”, “ab”, “crash”. Both two tools get 
stuck after one hour and cannot make any progress in two 
hours. The detail is shown in Table. 1. The first two columns 
mean the number of the seeds and branches found when each 
tool is stuck respectively. The third column lists the number of 
conditions that have been satisfied. We analyze the coverage 
information about the missed branches and compare them with 
the instructions in assembly code. The result shows that in AFL 
only “0” has been satisfied while CovFuzz only misses “crash”. 
Then we manually generate a testcase that meet the criteria. 
The last two columns are the number of the newly found seeds 
and branches. This test program is very small with dozens of 
code lines in total, so the cost of manually analysis is much 
lower than running fuzz for countless hours. To verify the 
availability of our work, we test it on some real-world program 
in the next section. 

IV. EVALUATION 
In this section, we will discuss the result of using our tools 

on real-world programs. We only test it on our work because 
the major contribution of the work is accurate coverage and its 
help in testing. This tool is based on PTfuzz and the previous 
work has proved that PTfuzz has a relatively higher code 
coverage than AFL[2]. Furthermore, we have illustrated how 
this work could help other test tools in the last section by 
comparing our tool with AFL.  

We chose four binaries to test, including djpeg and jpegtran 
from libjpeg 9c, pngfix from libpng 1.6.35 and tiffinfo from 
libtiff 4.0.9. We tested them all for at least 24 hours. Due to the 
constraints of computation resources and time, we only waited 
three hours or a little bit more after the progress be struck if the 
running time was out of 24 hours. The results are shown in 
Table. II. The first column lists the number of visible edges in 
the binary, we could get it after building the HashMap at the 



TABLE II.  RESULTS OF RUNING REAL WORLD PROGRAM AND COVERAGE IMPROVEMENT 

Target 
binary  

Visible 
branches 

Covered 
seeds 

Covered 
branches 

Time with no 
find 

Check points No.1 newly 
covered branches 

No.2 newly 
covered branches  

No.3 newly 
covered branches 

djpeg 811 56 109 4 hours 3 47 19 65 
jpegtran 1367 26 84 3 hours 3 56 50 87 
pngfix 1432 276 751 3 hours 3 14 19 24 
tiffinfo 453 12 28 15hours 3 5 38 68 

begin of the test. The next three columns contain information 
about execution before human intervention. The covered seeds 
and covered branches represent the number of seeds and 
branches found before stuck. The covered branch excludes 
hidden edges. Time with no find means how long has the 
progress been in stuck. After a test to binary gets stuck for 
hours, we would analyze the coverage information got from 
CovFuzz to see branches that are never been hit during the test. 
Normally, the number varies by binary size but would be much 
more than a hundred. We randomly chose three branches that 
connect reachable basic block and untouched one as 
breakpoints to overcome the bottleneck for each binary. 

We selected and analyzed 12 breakpoints to figure out why 
those branches are never been hit in total. After associated the 
address with the assembly code, we observed that arguments 
set in the command line or the magic number to mark a special 
kind of inputs could hinder most testings to go deeper. We 
modified the inputs and changed the argument value according 
to the condition that blocks the corresponding breakpoint to see 
the coverage improvement. For each breakpoint, we only run it 
for 2 hours due to the time limitation. Then we manually 
counted the newly found branches and listed them in the last 
three columns in Table. II. The findings of solving different 
bottlenecks are listed separately with the serial number. 
However, the coverage of using different arguments could not 
be compared directly in bitmap. Our work shows exactly which 
branch is missed. Testers could compare the coverage of 
different tests and remove duplicate ones to get the coverage in 
total.The results of the experiment show that different ways to 
modify input or argument take different improvement.  

Then we analyzed the CFG build according to information 
in HashMap, found out that changes of arguments could take 
much improvement. However, there are still missed branches 
even after trying every argument. Some branches could only be 
hit when under the premise of a specific group of arguments. 
We could get all the valuable sets by solving the breakpoints. 
For example, in the initial test of tiffinfo, there are dozens of 
basic blocks never been touched. We located those basic blocks 
and found that they belong to a same function which would 
only be called when three specific arguments are used together. 
We could hardly find this set by guessing.  

V. DISCUSSION 
The foremost limitation of CovFuzz is the fact that we do 

not know which breakpoint is capable of exploring more 
branches than others. The resource should be given to where 
we can gain more to discover more untouched code within 
limit time. This inspires us about future work to design an 
algorithm that could prioritize those branches lead to more 

unexplored branches and report them to testers. Another   
limitation of our work is that testers are hard to figure out what 
blocks the test when compiling the target program without 
using the -Wall argument. The magic numbers are difficult to 
be discovered when completely depending on assembly code.  

VI. CONCLUSION 
In this paper, we present CovFuzz, a binary compatible 

fuzz-testing tool featuring accurate coverage information 
collection capability. We analyze the drawbacks of previous 
works on coverage accuracy and demonstrate that accurate path 
trace could significantly help path exploration. Our work uses a 
hybrid way that combines static analysis with dynamic path 
tracing to collect code coverage and implements precise path 
coverage tracking by taking full advantage of Intel Processor 
Trace. We test it on a testcase and four real-world programs, 
proving that our work can help other test tools to cover more 
code. 
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