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Abstract—Coverage-guided gray-box fuzzing (CGF) is an
efficient software testing technique. There are usually multiple
objectives to optimize in CGF. However, existing CGF meth-
ods cannot successfully find the optimal values for multiple
objectives simultaneously. In this paper, we propose a gray-box
fuzzer for multi-objective optimization (MOO) called MobFuzz.
We model the multi-objective optimization process as a multi-
player multi-armed bandit (MPMAB). First, it adaptively selects
the objective combination that contains the most appropriate
objectives for the current situation. Second, our model deals
with the power schedule, which adaptively allocates energy to
the seeds under the chosen objective combination. In MobFuzz,
we propose an evolutionary algorithm called NIC to optimize
our chosen objectives simultaneously without incurring additional
performance overhead. To prove the effectiveness of MobFuzz,
we conduct experiments on 12 real-world programs and the
MAGMA data set. Experiment results show that multi-objective
optimization in MobFuzz outperforms single-objective fuzzing in
the baseline fuzzers. In contrast to them, MobFuzz can select the
optimal objective combination and increase the values of multiple
objectives up to 107%, with at most a 55% reduction in the energy
consumption. Moreover, MobFuzz has up to 6% more program
coverage and finds 3x more unique bugs than the baseline
fuzzers. The NIC algorithm has at least a 2x improvement with
a performance overhead of approximately 3%.

I. INTRODUCTION

Fuzz testing, or fuzzing, is one of the most successful
search-based software testing approaches. Coverage-guided
gray-box fuzzing (CGF), as an important variant of fuzzing,
has recently received wide attention from researchers[1]. Es-
sentially, CGF is an optimization problem [2], [3]. The key
to an optimization approach is to search the input space to
find optimal solutions and optimize the objectives. Optimizing
the objectives means searching for the inputs that maximize
or minimize the values of objectives [4]. In CGF, the most
significant objective is code coverage, and the goal of CGF is
to maximize coverage.

Single-objective optimization searches for the optimal so-
lutions for only one objective. However, in real-world situ-
ations, more than one objective is required to be optimized
simultaneously to solve difficult problems[4], [5], such as
detecting different kinds of bugs and improving fuzzing effi-
ciency. Specifically, in different stages of the fuzzing process,

these objectives should be adaptively selected and prioritized
according to the testing scenario. For example, when testing
code fragments of memory allocation, seeds regarding the
objective of memory consumption should be prioritized; to
break the embedded branch conditions, seeds with more satis-
fied comparison bytes should be an important objective. Thus,
multi-objective optimization (MOO) is proposed to effectively
study the balanced solutions with optimal trade-offs among
multiple objectives [6], [3], [4].

Though coverage-guided fuzzers also consider objectives
other than coverage in the searching process, existing gray-
box fuzzers cannot really support multi-objective optimization.
AFL [7], for example, also searches for inputs with two
other objectives, the execution time and input size. Favorable
inputs (i.e., seeds) that have a smaller product of these two
objectives (speed ∗ size) are selected. Theoretically, in the
search process, considering one solution at a time, e.g., the
product of the objectives, may result in getting stuck in
a local optimum and being unable to produce the global
optimal solution [3]. Some tools cannot coordinate multiple
objectives simultaneously. When adding new objectives, old
ones are discarded. For example, MemLock [8] targets memory
consumption bugs by choosing seeds with more memory
consumption. It optimizes the objectives of both coverage
and memory consumption. However, as a tool based on AFL,
MemLock entirely removes the speed objective of AFL. This
ignorance of multiple objectives clearly affects the execution
speed of fuzzing according to our experiments.

Therefore, in reality, to properly optimize multiple ob-
jectives simultaneously in CGF, we have to overcome the
following challenges: 1) Conflict effects among different ob-
jectives. During the long campaign of fuzzing, optimizing one
objective may have a negative effect on another objective. For
example, according to our experiments, pushing the number
of satisfied comparison bytes to a large value to pass branch
conditions will slow down the whole fuzzing process. This
conflicting internal relationship among objectives requires us
to properly coordinate different objectives in different stages to
search for a global optimum solution. Thus, we conclude the
adaptive selection of objective combination as the first research
point in this paper.

2) Power schedule suitable for a multi-objective sit-
uation. The power schedule of CGF is used to control the
number of mutations and executions (i.e., amount of energy)
on seeds [9], which directs the fuzzing process. Previous work
on power schedule, such as AFLFast [1] and EcoFuzz [10],
aims to allocate an appropriate amount of energy based on the
path discovery ability of seeds to save energy. However, under
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the multi-objective situation, the power schedule is required to
combine with objective combination selection to control the
energy allocation. Thus, we identify power schedule combined
with objective combination selection as the second research
point in this paper.

3) Reducing performance overhead introduced by
multi-objective fuzzing. Efficiency is an important metric in
fuzzing. When taking multi-objectives into consideration, the
objective combination selection, as well as the optimization on
power schedule and mutation strategy all introduce additional
overhead. For example, Cerebro[11] uses the idea of the Pareto
frontier (i.e., the set of seeds with the optimal objective values)
and non-dominated sorting [12] to search for the optimum
solutions in an evolutionary process. However, this process of
Cerebro is executed only once in a fuzzing cycle. It keeps
the fuzzer waiting for the final result and wastes precious
CPU time. Additionally, a single run cannot produce the global
optimal solution. Calculating the Pareto frontier and revealing
the convergence usually require more than 100 iterations
through the evolutionary process[12]. Directly adopting this
evolutionary procedure in fuzzing to find the optimal solution
will bring significant performance overhead. Therefore, the
third research point is to find the optimal results of the
selected objectives without introducing additional performance
overhead.

To overcome the above challenges of gray-box fuzzing
in MOO, in this paper, we propose MobFuzz. To deal with
the adaptive selection of objective combinations, we model
the process of CGF under multi-objectives as a multi-player
multi-armed bandit (MPMAB) problem. The goal of the classic
MAB model is to maximize the reward in finite trials by choos-
ing the appropriate arms[13], [10]. We model the objective
combinations as different players with their own goals to deal
with the problem of combination selection. The best objective
combination that has the maximum reward for the current
fuzzing state is selected. To deal with the power schedule
suitable for a multi-objective situation, we model the seeds as
bandit’s arms and classify the fuzzing states into exploration
and exploitation. MobFuzz controls the number of mutations
and executions on a seed through the adaptive power schedule.
Using this model, MobFuzz allocates the appropriate amount
of energy for seeds under the chosen combination to reach the
optimal results and avoid a waste of energy. To address the
third challenge, we propose an evolutionary algorithm called
non-dominated sorting genetic algorithm in CGF (NIC). It
is designed based on the Pareto frontier and non-dominated
sorting to search for optimal solutions in an evolutionary
process. A new mutation strategy is designed by casting the
objective combination to a corresponding mutation operator
combination. The mutators that are more likely to increase the
objective values are selected with a greater chance. In addition,
we propose several methods, such as a shared seed pool, to
reduce the performance overhead.

To prove the effectiveness of MobFuzz, we conduct a
series of experiments on real-world target programs and
the MAGMA data set. Experiment results show that multi-
objective optimization in MobFuzz can outperform single-
objective optimization in the baselines. Compared with the
state-of-the-art fuzzers, such as MemLock and FuzzFactory,
MobFuzz can optimize all the objectives simultaneously to

reach the optimal values. Specifically, MobFuzz exceeds its
competitors up to 107% in the values of objectives. In addition,
the results show the effectiveness of our MPMAB model and
NIC algorithm. We reduce at most 55% energy consumption,
and NIC has at least a 2x performance improvement compared
with the baseline fuzzers with only 3.3% performance over-
head. Additionally, MobFuzz has at most 6% more program
coverage and finds 3x more bugs than the competitors. In
conclusion, we make the following contributions in this paper:

• We target the weakness of CGF in multi-objective
optimization. We model the MOO in gray-box fuzzing
as a multi-player MAB problem and adaptively select
the objective combinations and allocate energy to
seeds by the model.

• We propose the NIC algorithm in MobFuzz to solve
the problems of existing fuzzers in finding the opti-
mal results. NIC is integrated into the fuzzing loop
and searches for the optimal objective values without
introducing too much overhead.

• We implement MobFuzz and evaluate it with real-
world programs and the MAGMA data set. The re-
sults demonstrate the effectiveness of multi-objective
optimization in CGF.

II. BACKGROUND

A. CGF and Objectives

As one of the most popular software testing techniques,
fuzzing has recently developed rapidly, especially in the field
of coverage-guided gray-box fuzzing[14], [15], [16], [17], [18].
Compared with the plain black-box fuzzing and complicated
white-box fuzzing, the key of CGF is to maximize code cover-
age through lightweight instrumentation[9]. As a representative
of CGF, AFL exposed many security-critical vulnerabilities
with these features[19].

Basic infrastructure. CGF starts with selecting a seed
from the seed pool according to its goal and then allocates
energy to the selected seeds via the power schedule. The
energy controls the number of mutations and executions to this
seed. Next, the seed is mutated to generate test cases. When
executing these test cases, CGF monitors whether they achieve
new code coverage. Test cases that achieve new coverage will
be saved as seeds to the seed pool. Later, CGF goes back to
seed selection and starts the next round of fuzzing.

Objectives in CGF. In addition to code coverage, gray-box
fuzzers usually need to maximize multiple objectives when
maintaining the seed pool. For instance, AFL searches for
seeds with a faster execution speed and smaller size. The
product of them, i.e., speed ∗ size, is used to optimize the
objectives. Seeds with a larger product result will be marked
as favored, and they will be selected with a greater chance
than the non-favored seeds.

However, existing coverage-guided fuzzers cannot support
multi-objective optimization. Some fuzzers based on AFL
disable the original speed objective in AFL when adding a
new objective, such as MemLock [8] and FuzzFactory [20];
other solutions use simple algorithms to coordinate multiple
objectives, which will get stuck at a local optimum [7], or
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introduce unacceptable overhead [11]. Therefore, a solution
that can optimize multiple objectives simultaneously without
causing performance reduction is needed.

B. MAB Problem

Exploration vs. Exploitation. The trade-off between
exploration and exploitation is an important concept in game
theory[13]. Inspired by a player’s choice to maximize the
reward when playing a slot machine, the multi-armed bandit
model is proposed to solve this problem[21]. According to
the definition, a classic MAB model contains N parallel arms,
and only one arm is selected each time. The expectation of
reward for arm i (i ∈ {1, 2, ..., N}) is defined as Ri. The key
to the MAB problem is to maximize the total reward within
finite arm selections. However, before trying a certain arm, its
reward is unknown. The process of exploration performs trials
on an arm to acquire a more accurate calculation of its reward.
When the rewards of all the arms are known, choosing the arm
with the maximum reward is the process of exploitation. In
conclusion, choosing the best arm (exploitation) will maximize
the current total reward. In the long term, making trials on
reward-unknown arms (exploration) will help reach a larger
total reward [22]. It is our goal to weigh the strengths and
weaknesses between exploration and exploitation in the MAB
problem.

The inappropriateness of using MAB in CGF. Previous
work in fuzzing, such as EcoFuzz [10], models seeds as arms
in MAB and solves specific problems through this model,
e.g., energy allocation. If we want to make improvements
on MOO in CGF, the classic MAB model is inappropriate.
First, as discussed above, there are two choices we need to
make: objective combination selection and energy allocation.
It is natural to consider the seeds as arms in the MAB
model. However, a single-player MAB model is no longer
applicable since different objective combinations stand for
different players with their own goals. In other words, we need
a multi-player MAB to model this process. Second, the reward
of the classic MAB model is time-invariant, and the number
of arms is constant[10]. However, as the fuzzing campaign
continues, the rewards of the objective combinations and seeds
will change accordingly. Additionally, the number of seeds
is not constant during fuzzing. The above drawbacks of the
classic MAB model drive us to propose a variant model of
MAB that is suitable for multi-objectives in fuzzing.

III. ADAPTIVE MULTI-OBJECTIVE OPTIMIZATION

A. Overview

As depicted in Figure 1, MobFuzz is designed by adding
two new modules to the classic fuzzing process: the MPMAB
model and the NIC algorithm. The MPMAB model adaptively
determines the objective combination and energy allocation.
The NIC algorithm produces the optimal objective values
through an evolutionary process without introducing additional
performance overhead.

The basic procedure of MobFuzz contains the following
steps. First, a seed is selected from the seed pool. Next, the
MPMAB model determines the best objective combination
under the current fuzzing status. Based on the chosen objective
combination, MPMAB allocates different amounts of energy
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Fig. 1. The main fuzzing loop of MobFuzz. The sub-processes in different
colors are our key approaches in MobFuzz.

to seeds in exploration and exploitation states. Then, MobFuzz
performs mutations and executions based on the allocated
energy. At the same time, it monitors the objective values
in the chosen combination. If a starting condition is met, the
NIC algorithm is invoked. NIC is an evolutionary process. It
updates the objective values to gradually approach the optimal
solutions. Finally, the Pareto seeds with the optimal values are
saved into the seed pool, and the next round of fuzzing begins.

B. Multi-player Multi-armed Bandit Model

Our MPMAB model deals with two problems, including
adaptively selecting objective combinations and allocating en-
ergy according to the chosen objective combination.

TABLE I. THE NAMES AND DEFINITIONS OF VARIABLES IN THE
MPMAB MODEL

Name Definition

t the ID of the current fuzzing round
Oi the ith objective
Cl the lth combination
vtOi

, vtCl
the average value of objective Oi or the objectives in Cl in round t

R the reward
sj the jth seed
vOi

(sj) the value of objective Oi after executing sj

𝐶1

𝑆1 𝑆2

𝐶2

𝑆3 𝑆4

𝐶3

𝑆5

𝐶𝐿−1

𝑆6 𝑆7

𝐶𝐿

𝑆8

Objective
combination
selection

Energy
allocation

…

…

Fig. 2. Demonstration of the MPMAB model. The rectangles indicate
objective combinations. The circles indicate seeds. The rewards of the colored
shapes are known. The depth of color of the seeds indicates the amount of
energy allocated.

1) MPMAB Model Overview: Table I shows the variables
in our model. Figure 2 shows the overview of our MPMAB
model. First, our MPMAB model handles the problem of
adaptive objective combination selection. Each combination
stands for a player with his own goal when playing the slot
machine. The number of objectives and the number of objec-
tive combinations are constant during fuzzing. For instance, if
we have 3 objectives to optimize, there are 8 (23) objective
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combinations in total. Since the number of combinations is
constant, the reward of each combination can be captured
through a pioneer stage. Then, we choose the best objective
combination through our proposed algorithm (Section III-B2).

Second, MPMAB deals with the adaptive energy allocation
of seeds under the chosen objective combination. During
fuzzing, the number of seeds is increasing, and we cannot
estimate the reward until we execute the seed. Therefore, the
trade-off between focusing on reward-known seeds (exploita-
tion) and trying reward-unknown seeds (exploration) is not
as straightforward as in combination selection. To address
this problem, we divide the fuzzing process into exploration
and exploitation states. We can adaptively allocate energy in
different states under different objective combinations (Section
III-B3).

2) Objective Combination Selection: At the tth minute, the
ID of the current fuzzing round is t. As the fuzzing campaign
proceeds, we can obtain the average value of objective Oi
during round t, which is denoted as vt

Oi
. In addition, we can

calculate the average value of objective Oi in the previous t
rounds (round 1, 2..., t) as

v
t
Oi

=

∑t
k=0 v

k
Oi

t
(1)

Therefore, we define the reward of choosing objective Oi in
round t as

R(Oi, t) = t ∗ (
vtOi

vtOi

− λ ∗
vtO0

vtO0

) (2)

As we can see from the equation,
vtOi
vtOi

denotes the ratio of
the objective value in the current round and in the previous
t rounds. When vt

Oi
is greater than vt

Oi
, the reward is large.

This encourages selecting the objectives that increase rapidly.
Additionally, we emphasize changes in late rounds [23] and
multiple t in front of the reward. In addition, the speed of
the fuzzing campaign is crucial to fuzz testing[24], [25], [26];
we add a penalty to objectives that slow down the process:
−λ ∗ vtO0

vtO0
(speed is the 0th objective).

When the number of objectives is N, the number of
objective combinations is 2N. We deduce the reward for a
combination Cl as

R(Cl, t) =

∑
Oi∈Cl

R(Oi, t)

L
+ t ∗ L (3)

L is the number of objectives in this combination. This reward
consists of two parts. First, we use the average reward of the
objectives. Second, t ∗ L is added to reward combinations with
more objectives.

Next, we can calculate a final score for the combinations
to make decisions. UCB1 [27] is a classic answer to the MAB
problem, and we calculate scores based on it as

Score(Cl, t) = R(Cl, t) + U(Cl, t)

=

∑t
k=0 R(Cl, k)

t
+ γ ∗

√
ln(

∑
Cl∈C

nl)

nl

(4)

C denotes all the objective combinations. The score consists
of two parts. R(Cl, t) is the average reward of Cl in previous

t rounds, which gives combinations with greater historical
rewards higher scores (exploitation). U(Cl, t) is the upper con-
fidence bound of Cl, and it adds greater scores to combinations
with smaller nl values (the number of times the combination
is selected), which is exploration. At the beginning of fuzzing,
we go through a pioneer stage, in which each objective
combination is selected once. After this stage, the nl value of
each combination will be 1. Next, at the end of each round of
fuzzing, we calculate the score of each combination and choose
the one with the maximum score as the objective combination
for the next round. Moreover, γ is a key parameter in UCB1
that controls the balance between exploration and exploitation,
and we will discuss this parameter in Section V.

3) Power Schedule: Once we determine the objective
combination in this round of fuzzing, our MPMAB model
goes to adaptive energy allocation under the chosen objective
combination. The number of seeds (arms) increases as the
fuzzing campaign continues, and we cannot reuse a pioneer
stage to get the reward to start the model. As mentioned above,
our key challenge is to balance exploration (trying reward-
unknown seeds) and exploitation (choosing the seed with the
maximum reward). Our goal is to adaptively assign energy
under the chosen objective combination in different fuzzing
states. However, according to the related research in energy
allocation of CGF including [1], [10], [28], there is no previous
work about allocating energy in the situation of multi-objective
optimization. Based on this background, we first define the
average energy to reach a certain objective value as

E
t
Oi

=
Execs(t)

vtOi

(5)

This is the quotient of the number of executions and the value
of an objective in t rounds. We consider it the minimum
energy required to increase the objective value.

Likewise, we can deduce the average energy of Cl in t
rounds as

E
t
Cl

=

∑
Oi∈Cl

E
t
Oi

L
(6)

Next, we divide the fuzzing states into different states:
Exploration state. This state implies that there are currently
reward-unknown seeds, and we need to try as many new seeds
as possible. We allocate the minimum energy to seeds in this
state as

E(sj) = E
t
Cl

(7)

This amount of energy has two features: 1) It remains very
small. 2) Although it is small, it is the minimum expected
energy needed to reach greater objective values. Therefore,
we assign this amount of energy to seeds in this state.

Exploitation state. In this state, all the rewards of seeds are
known, and it is rational to choose the seed with the maximum
reward. We define the energy in this state as

E(sj) = E
t
Cl
∗ (
vCl

(sj)

vtCl

+
∑

Oi∈Cl

is max(vOi
(sj))) (8)

We can see that Equation 8 is based on the energy in the
exploration state in Equation 7. In this equation, vCl (sj)

vtCl
is the
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ratio between the objective value of executing seed sj and the
average value. When the objective value of executing the seed
(vCl

(sj)) is greater than the average value (vt
Cl

), we allocate
more energy to encourage it and vice versa. Additionally,
is max() returns 1 if executing this seed reaches the maximum
value of a certain objective and returns 0 otherwise. If execut-
ing this seed reaches the maximum value of a certain objective,
we add a bonus based on this function (is max(vOi

(sj))) to
the allocated energy.

C. NIC Algorithm

Algorithm 1 The MobFuzz algorithm.
Require: Initial seeds S, Objectives O
1: Q = S
2: while cur time < TIME OUT do
3: if cur time− prev time >= 1 min then
4: /* combination selection: obj com sel(obj val, obj sel, t) */
5: Score = R(Cl, t) + U(Cl, t)
6: Cl = arg max(Score)
7: /* end of combination selection */
8: prev time = cur time
9: end if

10: /* power schedule: pow sch(Cl, obj val, t) */
11: if state == Exploration then /* current state of fuzzing */
12: energy = E

t
Cl

13: end if
14: if state == Exploitation then
15: energy = E

t
Cl
∗ (

vCl
(sj)

vt
Cl

+
∑

Oi∈Cl
is max(vOi

(sj)))

16: end if
17: /* end of power schedule */
18: for i = 0→ energy do /* energy assigned for each seed */
19: mut exe(s) /* seed s is selected by AFL mechanism */
20: if new cov(s) == True then
21: Q = Q+ s
22: end if
23: if need nic == true then
24: /* NIC: NIC(s’, Cl, T) */
25: for j = 0→ T do
26: cross mut exe(s′) /* s’ is the seed in NIC */
27: update(OM )
28: if new cov(s′) == True then
29: Q = Q+ s′

30: end if
31: end for
32: return Pareto /* Pareto frontier */
33: /* end of NIC */
34: end if
35: Q = Q+ Pareto
36: end for
37: end while
Ensure: Pareto seeds with optimized objectives OM

1) NIC Overview: To optimize the objectives in the chosen
combination and find the optimal result without additional
performance overhead, we propose our NIC algorithm. It is
an evolutionary algorithm designed for multi-objective opti-
mization in MobFuzz. The basic process of NIC is as follows:
First, an initial population of seeds with a scale of N is selected.
Next, the offspring seeds are obtained with crossover and
mutation among the initial population. Second, we execute
the target program with each seed in the population and
obtain related information (Line 26 in Algorithm 1), e.g.,
coverage information and objective values. From the second
generation onwards, the parent population and the offspring are
combined to perform non-dominated sorting [12]. According
to the non-dominated relationship of seeds, the seeds with
updated objective values (Line 27) are selected to form a
new parent population with a scale of N. Additionally, the
coverage information helps update the seed pool (Lines 28
- 30). Finally, the new offspring seeds are generated by the

crossover and mutation among the new parent population. This
process repeats until the pre-defined number of iterations is
met, and NIC outputs the Pareto frontier, which contains the
seeds with the optimal objective values (Line 32).

2) Detailed Techniques of NIC: Adaptive population size.
The scale of the population is a crucial factor in the NIC
algorithm. A small population lacks diversity and cannot
produce the optimal result. A large population requires more
computing resources in the evolutionary process. Therefore,
we need to strike a balance in the size of the population
before starting NIC. Through extensive testing, we determine
that 10% of the number of seeds should be an appropriate
value for the population size. Before we start NIC each time,
we randomly select 10% of the seeds from the seed pool to
form the initial population, and they go into the evolutionary
process.

Co-mutation operators with AFL. We propose 3 tech-
niques for efficient mutation in NIC. First, we integrate the
fuzzing-effective operators into NIC, e.g., replacing four bytes
with a boundary value of the integer type. Moreover, traditional
evolutionary or genetic algorithms retain both offspring to
maintain the diversity of the population. To address this
problem, in NIC, two parent seeds go through crossover and
mutation, and we keep both of the generated offspring. Finally,
since AFL selects different mutation operators and positions
to mutate with equal probability, it cannot highlight the impor-
tance of different operators and positions. In addition, in the
situation of multi-objective optimization, we need to connect
objectives to a specific or some mutation operators. In other
words, an objective combination should have a corresponding
mutation operator combination, in which the operators should
be given a higher probability. To handle these issues, in NIC,
we record the number of times the operators and positions
can increase the objective values in the chosen objective
combination. The ones that are more likely to increase the
objective values are selected with a greater probability. In this
way, we can get the best mutation operators or positions for a
chosen combination.

Reducing performance overhead. The evolutionary or
genetic algorithms usually iterate for more than 100 gener-
ations. If we directly inserted this process into the fuzzing
loop, the performance overhead would be unacceptable. We
propose several methods to handle this issue. For example, as
described in Section III-C1, when we crossover and mutate
the parent population to generate the offspring, we add the
process of the new coverage monitor. Seeds generated during
NIC that cover new code can also be saved to the seed pool
of the main fuzzing loop. Techniques such as this shared seed
pool indicate that NIC is no longer independent of the main
loop. They are integrated instead. In this way, the overhead to
produce the optimal results through the iterations is removed
in NIC. In addition, we add a starting condition for NIC. In
our design, when we monitor a decrease in the values of the
objectives, we start the NIC algorithm to optimize and increase
them. Specifically, we record the objective values every minute.
When the gradient of two continuous values is less than a
threshold, the NIC algorithm is started. According to our
preliminary experiments, when the threshold is -0.15, it is the
configuration to start NIC to achieve the best performance.
Additionally, NIC will execute for a pre-defined number of
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iterations (Line 25 in Algorithm 1).

D. Working Flow

In Algorithm 1, the inputs of MobFuzz are the initial seeds
S and the objectives O we want to optimize. The seed pool Q
is initialized to the user-provided seeds on Line 1. Within the
configured timeout period of fuzzing (TIME OUT), MobFuzz
continues to fuzz the target program.

To begin, we need to determine the time interval to select
the objective combination for the next round. Based on our
preliminary evaluation, we take 1 minute as the time interval
to make selections. The 24-hour fuzzing campaign is thus
divided into 1440 ( 24∗60

1
) rounds. Each round t of fuzzing

lasts for 1 minute. At the end of round t, we need to
select the objective combination for the next round. As shown
on Lines 3 - 9, if the time interval exceeds 1 minute, we
will adaptively select objective combinations with MPMAB
in function obj com sel(). The arguments of this function
include obj val (the values of the objectives), obj sel (the
numbers of selections of the objectives), and t (the current
fuzzing round). This function outputs the selected objective
combination Cl. When a combination is determined, in this
time interval, we will optimize the objectives in this chosen
combination. Section III-B2 shows this procedure in detail.

On Lines 10 - 17 in function pow sch(), we monitor the
current state (exploration or exploitation) of fuzzing and assign
energy to seeds based on the chosen objective combination.
The arguments are listed on Line 10. The output is the energy
according to Equation 7 and 8 in Section III-B3. The amount of
energy determines the number of mutations and executions on
a seed (Line 19). Specifically, we focus on the power schedule.
Therefore, we inherit the seed selection mechanism of AFL.
After the mutations and executions (mut exe(s)), we save
seeds that bring new code coverage (Lines 20 - 22). Lines 24 -
33 show the workflow of NIC. The arguments of NIC() include
s′ (the selected seeds from the pool), Cl (the chosen objective
combination), and T (the number of iterations of NIC). Line
26 shows the mutations and executions of NIC. The values of
objectives OM are updated on Line 27. Additionally, the NIC
algorithm goes through the evolutionary process with a shared
seed pool (Line 29) and optimizes the objective values. The
output of NIC is the Pareto frontier [12] which is the set of
seeds with the optimal objective values. We add the Pareto
frontier as seeds to the seed pool on Line 35. In conclusion,
NIC has the following functionalities: 1) It outputs the optimal
objective values of the selected objectives. 2) NIC outputs
the Pareto frontier, and these seeds are saved to the shared
seed pool. 3) At the same time, it saves seeds that bring new
coverage.

IV. IMPLEMENTATION

We implement MobFuzz based on AFL. We modify the
instrumentation code in LLVM to record the amount of stack
memory consumption and number satisfied comparison bytes,
respectively. The MPMAB model and the NIC algorithm are
implemented separately in afl-fuzz.c, and they contain 1.5k
lines of code in total. Additionally, we modify the main fuzzing
loop to interact with MPMAB and NIC. We replace the original
power schedule with the MPMAB schedule, and we add code

to check if the starting condition of NIC is met. Specifically,
when the gradient of two continuous objective values is less
than a threshold, NIC will be started. These modifications
contain about 0.5k lines of code.

V. EVALUATION

In our evaluation, we answer the following research ques-
tions:

• RQ1. How does multi-objective optimization in Mob-
Fuzz perform compared with single-objective opti-
mization in the baseline fuzzers?

• RQ2. How does the objective combination selection
adapt in the fuzzing process?

• RQ3. How does our power schedule perform com-
pared with the baseline fuzzers under the chosen
objective combination?

• RQ4. Does NIC optimize the objective values without
introducing additional performance overhead?

A. Setup

Target programs to test. We test 12 real-world programs
in total. They include programs of various purposes, e.g.,
image processing (tiff2pdf). Table II shows the basic in-
formation of these target programs. They are collected from
state-of-the-art papers and these papers are listed in Table XVI
in Appendix. We believe collecting programs in this way can
ensure persuasiveness and representativeness.

TABLE II. TARGET PROGRAMS

Targets Version Format

avconv -y -i @@ -f null libav-12.3 mp4
exiv2 @@ /dev/null exiv2-0.27 jpeg

infototap @@ ncurses-6.1 txt
mp42aac @@ a.aac Bento4-1.5.1-628 mp4

mp4tag –show-tags –list-
symbols –list-keys @@ Bento4-1.5.1-628 mp4

nm -C @@ Binutils-2.30 elf
podofopdfinfo @@ podofo-0.9.6 pdf

readelf -a @@ Binutils-2.30 elf
tiff2pdf @@ libtiff-4.0.7 tiff
tiff2ps @@ libtiff-4.0.7 tiff

podofotextextraxt @@ podofo-0.9.6 pdf
xmllint @@ libxml-2.98 xml

Baseline fuzzers to compare. AFL[7], MemLock[8], and
FuzzFactory[20] are used in our evaluation to test real-world
programs. According to our discussion in Introduction, they
are chosen because we can compare the multi-objective op-
timization of MobFuzz with the single-objective optimization
of them. In addition, we choose 3 objectives as our evaluation
metrics, including speed of execution (AFL), stack memory
consumption (MemLock), and number of satisfied comparison
bytes (FuzzFactory)1. These fuzzers use consistent settings:
deterministic and havoc.

We use seeds in the testcase directory provided by AFL
as the initial seeds. Our evaluations are conducted on a server
for 10 times and 24 hours.

1SP or Speed denotes execution speed, ST or Stack denotes stack memory
consumption, and CM or Cmp denotes number of satisfied comparison bytes.
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TABLE III. EVALUATION OF MOBFUZZ REGARDING DIFFERENT OBJECTIVES

Targets Execution speed Stack memory consumption Satisfied comparison bytes
MobFuzz AFL p value/Â12 MobFuzz MemLock p value/Â12 MobFuzz FuzzFactory p value/Â12

avconv 85.601 83.09 0.02/0.77 58704.00 37846.40 0.01/0.75 2.88∗108 1.51∗108 < 10−4/1.00
exiv2 671.41 372.58 < 10−4/1.00 1.55∗106 1.21∗106 0.01/0.80 4.66∗107 2.24∗107 < 10−3/0.92

infotocap 386.86 292.55 < 10−2/0.86 22122.40 15852.00 0.12/0.60 2.05∗108 1.70∗108 < 10−2/0.90
mp42aac 1688.83 1666.99 0.40/0.54 2.03∗105 1.81∗105 0.02/0.77 8.34∗107 4.20∗107 < 10−3/0.93
mp4tag 1452.70 1381.56 0.08/0.69 2.25∗105 1.98∗105 0.01/0.79 7.67∗107 4.23∗107 0.01/0.80

nm 1426.29 972.73 < 10−3/0.94 8.38∗106 7.17∗106 0.09/0.68 1.88∗108 6.57∗107 < 10−4/1.00
pdfinfo 875.96 642.15 < 10−4/1.00 3660.00 3660.00 -/0.50 1.14∗107 7.29∗106 < 10−4/1.00
readelf 1361.56 1056.57 0.05/0.72 2663.60 2382.40 0.43/0.52 3.08∗108 7.83∗107 < 10−4/1.00
tiff2pdf 1895.09 1670.86 < 10−4/1.00 1588.00 1588.00 -/0.50 4.38∗107 3.86∗107 0.25/0.49
tiff2ps 2050.05 1750.97 < 10−2/0.87 1308.00 1308.00 -/0.50 9.16∗106 8.48∗106 0.03/0.74
txtext 855.39 505.29 < 10−4/1.00 3876.10 3676.00 0.03/0.75 1.17∗107 1.12∗107 0.05/0.67

xmllint 1020.47 746.53 < 10−4/1.00 64112.80 64085.60 0.03/0.72 1.65∗108 6.65∗107 < 10−4/1.00

Average 1147.51 928.48(+23.6%)2 0.04/0.87 8.72∗105 7.40∗105(+17.7%) 0.04/0.66 9.60∗107 4.62∗107(+107.9%) 0.02/0.87

1 Greater values are better. 2 The percentages in the brackets of the last line denote the increase in contrast to the baseline fuzzers.

B. Effectiveness of Multi-objective Optimization

1) Results of Objective Values: Table III shows the average
objective values of 10 repeated runs. The p values and Â12
values are also listed in the table. The values of MobFuzz
are greater than (33 out of 36) or equal to (3 out of 36) the
compared values in all the comparisons. Among them, 32 pairs
of comparisons show a statistically significant difference (p <
0.05 or Â12 > 0.5). Specifically, we have 10 comparisons that
reach a p value less than 10−4 and an Â12 value of 1.0. For
example, in xmllint the satisfied comparison bytes of MobFuzz
and FuzzFactory are 1.65 ∗ 108 and 6.65 ∗ 107, respectively.
MobFuzz is approximately 2x better than that of FuzzFactory.
In the Average row, we can see that the average value of
MobFuzz is greater than that of the baseline fuzzers. In the
value of satisfied comparison bytes, we even achieve more
than a 100% increase in contrast to FuzzFactory.

MOO is designed to accomplish the task of generating
the optimal values for all the objectives. The reason for the
improvement against MemLock and FuzzFactory is the NIC
algorithm that helps MobFuzz reach the optimal values. NIC
keeps looking for the Pareto seeds in an evolutionary process.
Every iteration is closer to the optimal values. The final result
is closest to the optimal values. MemLock and FuzzFactory
have no such mechanism to reach the optimal values for the
objectives.

2) Branch Coverage and Unique Bugs: Table IV shows
the branch coverage and number of unique bugs found by
the fuzzers. Branch coverage is the recommended coverage
metric in evaluating fuzzing [29]. In regard to the number
of branches, MobFuzz outperforms the baseline fuzzers in 30
out of the 36 comparisons. On average, it can find 6% more
branches at most than AFL and FuzzFactory. The unique bugs
are manually collected from the unique crashes with the help
of AddressSanitizer (ASAN) and gnu debugger (GDB). In the
columns of unique bugs, despite the all-zero target programs,
MobFuzz outperforms other fuzzers in all the 15 comparisons.
The average value of MobFuzz is greater than the competitors,
with 3x more bugs compared with AFL and MemLock.

We can see that MobFuzz outperforms the 3 competitors
in the comparisons. The reason for this is that MobFuzz has
better multi-objective optimization ability than other fuzzers.
First, we retain a relatively fast speed in MobFuzz during
the fuzzing campaign. This gives MobFuzz more chances to
have more coverage and find more unique bugs. Additionally,

MobFuzz has greater values in stack memory consumption
than the competitors, which can lead to more bugs of the target
programs. Third, the number of satisfied comparison bytes
of MobFuzz is greater than other fuzzers. Satisfying more
comparisons helps in exploring more program branches. Based
on these reasons, MobFuzz can have more program coverage
and find more unique bugs than the baseline fuzzers.

• Answer to RQ1: Multi-objective optimization in MobFuzz
outperforms every single-objective optimization simultaneously
in the baseline fuzzers.

C. Objective Combination Selection
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TABLE IV. EVALUATION BASED ON BRANCH COVERAGE AND NUMBER OF UNIQUE BUGS

Targets Number of edges Number of unique bugs
MobFuzz AFL MemLock FuzzFactory MobFuzz AFL MemLock FuzzFactory

avconv 24366.31 22692.1 23750.8 21676.3 0.0 0.0 0.0 0.0
exiv2 11890.6 11144.7 11900.1 11769.1 0.0 0.0 0.0 0.0

infotocap 2319.4 2421.3 2351.0 2213.9 2.8 0.0 0.0 0.0
mp42aac 2890.6 2597.6 2722.7 2747.7 2.4 2.0 1.0 0.0
mp4tag 3081.9 2733.4 2949.7 2875.8 2.5 0.0 1.0 0.0

nm 7182.1 7077.5 7041.5 6923.6 0.0 0.0 0.0 0.0
pdfinfo 2988.3 2608.3 2608.3 2608.3 0.0 0.0 0.0 0.0
readelf 11444.4 10720.5 11180.4 11571.9 0.0 0.0 0.0 0.0
tiff2pdf 1471.6 1474.6 1469.2 1471.0 1.0 0.0 0.0 0.0
tiff2ps 451.0 425.4 425.4 426.0 1.0 0.0 0.0 0.0
txtext 2789.1 2687.0 2532.0 2599.0 0.0 0.0 0.0 0.0

xmllint 6072.8 5878.0 5944.7 5645.0 0.0 0.0 0.0 0.0

Average 6412.3 6038.4(6%)2 6239.7(3%) 6044.0(6%) 0.8 0.2(300%) 0.2(300%) 0(∞%)

1 Greater values are better. 2 The percentages in the brackets of the last line denote the increase in contrast to the
baseline fuzzers.

1) We set 1 minute as the time interval to make selections.
During the 24 hours of the fuzzing campaign, 1,440 selections
are made by the MPMAB model in total (possibly less because
the target program may still be executing at the end of the
time interval). Figure 3 shows how the selected combination
affects the values of objectives within each time interval. The
background colors show the selected objective combination
during this minute. The lines show the values of each objective.
We take the result of avconv as an example. We mark points
A, B and C in the figure of avconv. First, point A is marked to
prove the ability of MobFuzz to optimize multiple objectives
simultaneously. In this time interval, the chosen combination
is speed/stack/cmp. As we can see from the figure, in this
round, all the values of objectives increase. Next, at point
B, stack/cmp is selected. We note that as stack and cmp
increase, speed decreases, which demonstrates opposite effects
between objectives. Finally, point C shows our correction to the
slowdown of fuzzing. In this time interval, a penalty is added
to the stack and cmp objectives because of point B, and speed
is selected to increase the execution speed of fuzzing.

TABLE V. PERCENTAGES OF THE CHOSEN OBJECTIVE COMBINATIONS

Targets SP ST/SP/CM ST/CM SP/CM CM SP/ST ST

avconv 63.4% 3.8% 5.7% 6.5% 6.3% 8.5% 5.8%
exiv2 86.1% 4.6% 2.1% 2.1% 1.7% 1.6% 1.8%

infotocap 83.4% 4.9% 2.0% 2.2% 3.1% 2.2% 2.1%
mp42aac 73.0% 4.0% 3.4% 4.5% 5.1% 4.9% 5.1%
mp4tag 78.9% 4.3% 3.5% 3.1% 4.2% 3.5% 2.5%

nm 77.4% 4.7% 3.7% 5.4% 3.3% 2.3% 3.2%
pdfinfo 81.1% 4.3% 3.1% 3.2% 3.2% 2.6% 2.6%
readelf 81.5% 5.1% 2.8% 2.3% 2.1% 3.8% 2.3%
tiff2pdf 68.3% 3.7% 4.3% 6.4% 6.2% 5.8% 5.3%
tiff2ps 83.1% 4.4% 2.8% 2.0% 2.5% 2.8% 2.5%
txtext 83.5% 4.4% 1.8% 3.5% 2.0% 2.8% 2.0%

xmllint 84.7% 4.8% 2.8% 2.3% 2.2% 1.5% 1.7%

Average 78.7% 4.4% 3.2% 3.6% 3.5% 3.5% 3.1%

2) Table V and Figure 7 (in Appendix) show the distri-
bution of the selected objectives. As we take 3 objectives
(speed, stack, and cmp) into consideration, there are 8 objective
combinations in total. The most significant observation of
Table V and Figure 7 is that the MPMAB model tends to select
the speed objective in more than 60% of all the combination
selections. Again, we clarify our agreement with previous work
[24], [25], [26]: the top priority of fuzzing is execution speed.
Therefore, in Equation 2, we add a penalty to objectives that
slow down the fuzzing process. It is in line with our tendency
toward speed and can also explain the features of Table V and
Figure 7.

3) Finally, we need to prove whether we select the best
objective combination. Figure 4 shows different strategies in
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Fig. 4. The X-axis denotes different selection strategies. The Y-axis is the
ratio of objective values ( v

′

vM
) in different selection strategies (v′) in contrast

to our MPMAB selection (vM). v′

vM
< 1.0 means the objective value of this

selection is less than the MPMAB selection and vice versa.

contrast to ours. The X-axis is the proportion of speed in all
the selected combinations, and different proportions indicate
different selection strategies. We set 6 strategies, including 0%,
20%, 40%, 60%, 80%, and 100% proportions of speed. The
Y-axis shows the ratio of objective values ( v

′

vM
) of different

strategies (v′) in contrast to our MPMAB selection (vM). v′

vM
less than 1.0 means the objective value of this selection is less
than the MPMAB selection, and this selection is worse. For
example, in avconv, when the proportion of speed is 40%, we
highlight the results with a red dotted line. The speed of this
selection strategy is approximately 80% of ours. The stack and
cmp are just above 90% of ours.

As the proportion of speed increases, the value of speed

8



TABLE VI. AVERAGE ENERGY CONSUMPTION TO REACH THE OBJECTIVE VALUES OF THE FUZZERS

Targets Ave. energy of execution speed Ave. energy of stack memory Ave. energy of satisfied comparison bytes
MobFuzz AFL MemLock FuzzFactory MobFuzz AFL MemLock FuzzFactory MobFuzz AFL MemLock FuzzFactory

avconv 29.331 39.28 39.06 40.33 83.45 90.98 140.22 128.97 0.01 0.03 0.03 0.02
exiv2 22.03 40.73 37.59 32.22 10.80 19.04 16.23 11.01 0.16 0.37 0.47 0.29

infotocap 19.27 25.51 30.14 30.01 368.35 548.58 376.58 502.18 0.03 0.08 0.08 0.05
mp42aac 32.97 33.32 33.79 34.311 173.50 455.01 383.46 420.23 0.96 2.75 1.77 1.86
mp4tag 29.25 32.90 33.24 33.428 248.16 322.99 287.42 358.06 0.75 1.61 1.76 1.25

nm 25.78 33.18 32.04 32.79 216.21 449.31 277.64 34.86 0.31 0.66 0.66 0.44
pdfinfo 31.19 33.59 33.77 32.91 1.04 0.73 0.81 0.73 1.46 2.02 3.26 2.72
readelf 29.88 33.66 32.61 33.82 8765.65 19732.93 9243.49 11510.45 0.13 0.81 0.69 0.47
tiff2pdf 28.95 33.83 33.15 31.88 958.27 2346.60 1117.60 2712.60 1.84 1.94 2.23 1.87
tiff2ps 30.16 33.27 33.99 32.35 4.03 7.38 7.47 7.39 3.63 4.75 6.01 5.90
txtext 29.06 32.70 33.98 34.39 0.41 0.55 0.80 0.66 1.22 1.86 3.05 2.96

xmllint 29.20 32.64 31.77 33.05 24.39 163.85 140.92 260.80 0.12 0.46 0.23 0.41

Average 28.1 33.7(-17%)2 33.8(-17%) 33.5(-16%) 904.5 2011.5(-55%) 999.4(-10%) 1329.0(-32%) 0.87 1.44(-39%) 1.68(-48%) 1.52(-42%)
1 Smaller values are better. 2 The percentages in the brackets of the last line denote the decease in contrast to the baseline fuzzers.

also increases. However, as discussed previously in this paper,
it is often the case that objectives have opposite effects on
each other. The values of stack and cmp decrease as speed
increases. More interestingly, we mark the result of MPMAB
selection in the figure as a red triangle. The red triangle is close
to the intersection of the three lines. In conclusion, none of
the 6 selection strategies outperforms the MPMAB selection.
The objective values of our strategy are all greater than those
of the 6 strategies. The figure indicates that our combination
selection method handles the relationship among the multiple
objectives, and we can choose the most appropriate proportion
of each combination to optimize all the objectives. According
to our discussion above, we can answer RQ2.

• Answer to RQ2: Our selection strategy can adaptively
select the best objective combinations.

D. Power schedule
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Fig. 5. Comparison of our adaptive power schedule with non-adaptive and
MobFuzz−M (MobFuzz without MPMAB) schedules in 1 hour. The Y-axis
shows the amount of energy allocated by the schedules. The green background
color denotes that in this time interval, our adaptive schedule adjusts the energy
according to the chosen objective combination and the non-adaptive schedule
fails to.

As described above, there is no previous work solving
the problem of energy allocation under the chosen objective
combination. To demonstrate that our adaptive power schedule
can allocate a different amount of energy to seeds under the
chosen objective combination, we show the comparison among
our schedule, the non-adaptive (i.e., the power schedule of
AFL) schedule, and MobFuzz−M (MobFuzz without MPMAB)
schedule in Figure 5. The X-axis shows one hour of the
fuzzing process. The Y-axis shows the energy allocated by
our adaptive schedule and others. Moreover, the X-axis is
divided into 60 minutes, and each minute represents a time

interval with different chosen objective combinations. Our
schedule adaptively allocates energy according to the chosen
combination, where the non-adaptive schedule is insensitive
to the changes and keeps allocating the same amount of
energy under different objective combinations. Our schedule
outperforms the non-adaptive schedule in 43 out of the 60
minutes, which demonstrates the effectiveness of our adaptive
power schedule.

In addition, the result of MobFuzz−M schedule is similar
to the non-adaptive schedule. This result indicates that without
MPMAB, MobFuzz cannot adaptively choose the best objec-
tive combination or allocate the appropriate amount of energy.
Therefore, there is no change in the allocated energy corre-
sponding to the chosen objective combination. In conclusion,
the comparison between MobFuzz and MobFuzz−M proves the
effectiveness of MPMAB.

To answer whether our power schedule saves energy, we
conduct the following experiments. Table VI shows the average
energy consumption to reach the objective values in Table III.
We divide it by the number of executions for these objective
values and calculate the average energy. As we can see from
the table, among all the 108 pairs of comparisons with the
baseline fuzzers, only in 4 of them does our power schedule
have greater average energy consumption, and these are in nm
and pdfinfo. In other words, MobFuzz allocates less energy
for the objectives in over 96% of the scenarios. For instance, in
readelf, our allocated energy is 6x less (0.13 vs. 0.81) than
that of AFL. In the Average row of the table, we calculate
the averages of all the values. Among all the average values,
MobFuzz allocates less energy. Specifically, in comparison
with AFL in terms of stack memory, we save more than 50%
of energy. From the above discussion, we can answer RQ3.

• Answer to RQ3: Our power schedule can adaptively
allocate energy according to the chosen objective combination
and save more energy compared with the baseline fuzzers.

E. Evaluation on The NIC Algorithm

1) Results of Good Seeds: We define seeds that achieve
greater objective values than the average in the selected
objective combination as good seeds. Figure 6 shows the
percentages of good seeds generated in MobFuzz and the
baseline fuzzers. We can extract two conclusions from the
figure. First, among all the 12 target programs, the percentages
of good seeds in MobFuzz are greater than those of the
baseline fuzzers. The minimum performance improvement is
in readelf, which is approximately 2x. As discussed above,
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TABLE VII. COMPARISON OF THE MAIN LOOP MUTATION OPERATORS (MAIN) AND NIC MUTATION OPERATORS

Targets Ave. Time (ms) Ave. Length (byte) Num. of executions Num. of seeds Executions per seed
NIC Main NIC Main NIC Main NIC Main NIC Main

avconv 10.27 10.65 1273.19 5886.82 2.00∗106 5.38∗106 1796.20 20367.00 1113.46 264.15
exiv2 1.13 1.26 259.16 4140.21 3.24∗105 5.76∗107 74.40 5960.80 4354.83 9663.13

infotocap 1.58 1.94 8164.61 17377.55 3.20∗105 3.31∗107 195.60 5490.30 1635.99 6028.81
mp42aac 0.45 0.52 1201.41 5421.39 88873.40 5.31∗108 53.70 3192.90 1654.99 16630.65
mp4tag 0.44 0.64 1230.61 5570.29 95440.40 1.24∗108 39.80 3061.10 2398.00 40508.31

nm 0.59 0.62 1743.88 5450.27 95241.40 1.28∗108 37.60 3256.10 2533.01 39310.83
pdfinfo 1.06 1.09 2605.15 2652.75 499.10 7.57∗107 0.40 40.30 1247.75 1.88∗106
readelf 0.44 0.54 1039.05 9445.07 1.60∗107 1.02∗108 7671.90 49200.00 2085.53 2073.17
tiff2pdf 0.45 0.50 759.55 4170.77 14367.80 1.64∗108 12.60 1213.00 1140.30 1.35∗105
tiff2ps 0.45 0.46 372.43 4924.48 1472.60 1.77∗108 4.00 398.50 368.15 4.44∗105
txtext 1.20 1.21 3289.64 4360.13 398.00 6.85∗107 5.20 41.00 76.53 1.67∗106

xmllint 0.75 0.77 3629.15 9838.51 3.92∗105 9.02∗107 594.50 6683.40 658.38 13496.12

Average 1.45 1.54(-5.5%)1 1527.7 2808.6(-45.6%) 2.46∗106 4.10∗107(P5.7%)2 12867.2 88471.6(P12.7%) 1914.2 4632.6(-58.7%)
1 The percentages with a “-” in the brackets of the last line denote the improvements in contrast to Main. 2 The percentages with a “P” denote the

proportion of NIC to the total (Main+NIC).
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Fig. 6. Percentages of good seeds (seeds that achieve greater objective
values than the average in the selected objective combination) generated
during fuzzing, where greater values are better. MobFuzz−N denotes MobFuzz
without NIC.

in NIC, we optimize the values with crossover, mutation,
and execution. The results show that the NIC algorithm in
MobFuzz can produce more seeds that are better than the
average level, which helps optimize the objectives. Second,
without the help of the NIC algorithm, the performance of
the baseline fuzzers is similar, which has small percentages of
good seeds.

Moreover, we compare MobFuzz with MobFuzz−N (Mob-
Fuzz without NIC) in Figure 6. When NIC is disabled, we can
see a noticeable difference between MobFuzz and MobFuzz−N.
The percentage of good seeds in MobFuzz−N decreases to the
level of the baseline fuzzers without NIC. This result indicates
that without NIC, MobFuzz−N cannot generate as many good
seeds with greater objective values as MobFuzz. In conclusion,
by comparing MobFuzz with MobFuzz−N, we demonstrate the
effectiveness of NIC.

Along with the results in Figure 5, we can conclude that
there is synergy between MPMAB and NIC: 1) The power
schedule and NIC are executed under the chosen combination.
2) NIC outputs the Pareto seeds with the optimal values.
These values can affect the combination selection and power
schedule in return. In this way, these parts can cooperate. The

combination of MPMAB and NIC generates the best result.

2) Results of the Mutation Operators: Table VII is the
comparison between the mutation operator of NIC and the
main fuzzing loop (i.e., the operators of AFL). We can also
draw two conclusions based on the table. First, according to
the table, in the Time and Length columns, NIC has less
time consumption and shorter length in all of the 24 pairs of
comparisons. For the tiff2ps target program, NIC is 13x less
than Main. Regarding the average values of time and length,
NIC also outperforms Main. There is 5.5% less time and 45.6%
less length compared with Main. The results demonstrate that
with the help of our mutation strategy of selecting operators
with better performance according to the chosen objective
combination, NIC can achieve better objective optimization.

Second, we can determine the path discovery efficiency
of NIC based on the Executions and Seeds columns. The
numbers of executions of Main (i.e., the main loop) and NIC
show how many seeds are mutated and executed in each part.
The executions of NIC are 5.7% of the total (Main+NIC). If
we disable the shared seed pool mechanism, the inputs that
cover new paths in NIC will not be saved in the seed pool,
and this 5.7% of the executions will be wasted. Moreover, NIC
also finds seeds with higher efficiency. NIC generates 12.7% of
the total seeds with only 5.7% of the executions. The last two
columns show the executions per seed of Main and NIC. These
values indicate the number of executions required to find a new
seed. We can see a 58.7% decrease in the comparison, which
also proves that NIC can generate new seeds more efficiently.

TABLE VIII. PERFORMANCE OVERHEAD OF THE NIC ALGORITHM
AND PERFORMANCE IMPROVEMENT OF OUR ADOPTED TECHNIQUES IN

NIC

MobFuzz 1MobFuzz−N 2MobFuzz−POR

Speed 1147.51 1186.52(-3.3%) 1004.07(+14.3%)

1 MobFuzz−N denotes MobFuzz without NIC.
2 MobFuzz−POR denotes MobFuzz with NIC but with-

out the performance overhead reduction.

3) Performance Overhead of NIC: Table VIII shows the
average execution speed of MobFuzz and two other con-
figurations. MobFuzz−N denotes MobFuzz without the NIC
algorithm, and MobFuzz−POR denotes MobFuzz with NIC but
without the performance overhead reduction in NIC. First,
enabling the NIC algorithm in MobFuzz brings about 3.3%
performance overhead to the fuzzing process, which is accept-
able. Though NIC slightly slows down the fuzzing process,
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it can produce the optimal results for multi-objectives. By
sacrificing this 3.3% of speed, we can get optimal results
for other objectives. Additionally, even with this 3.3% per-
formance overhead, MobFuzz is still faster than the baseline
fuzzers, which is shown in Table III. Second, the comparison
with MobFuzz−POR indicates the performance improvement
of the techniques in NIC. The shared seed pool and other
techniques increase the speed of fuzzing by 14.3%, which
demonstrates the effectiveness of our techniques to reduce the
performance overhead in NIC.

TABLE IX. COMPARISON WITH NSGA-II IN THE OBJECTIVE VALUES

Execution speed Stack memory Satisfied comparison bytes

MobFuzz 1147.51 8.72∗105 9.60∗107
1MobFuzzN2 327.20 1.48∗105 8.83∗106

2MobFuzzN2+APS 559.31 2.97∗105 1.09∗107
3MobFuzzN2+CMO 446.89 6.87∗105 7.63∗107
4MobFuzzN2+POR 986.37 3.02∗105 2.56∗107

1 MobFuzzN2 denotes replacing NIC with NSGA-II.
2 MobFuzzN2+APS denotes enabling adaptive population size in MobFuzzN2.
3 MobFuzzN2+CMO denotes enabling co-mutation operators in MobFuzzN2.
4 MobFuzzN2+POR denotes enabling performance overhead reduction in

MobFuzzN2.

4) Comparison with Black-box MOO Techniques: To com-
pare with existing black-box MOO techniques such as NSGA-
II [12], we replace key design components in MobFuzz
with applicable existing designs from NSGA-II and call it
MobFuzzN2. Table IX shows the comparison of MobFuzz
with MobFuzzN2 in the objective values. In Section III-C,
we introduce three aspects of techniques in NIC, including
adaptive population size, co-mutation operators, and overhead
reduction. None of these techniques is adopted in MobFuzzN2.

MobFuzzN2 uses a fixed initial population size. At the
beginning of the fuzzing campaign, this size is too large for the
small seed pool. Starting with this large population will slow
down the fuzzing process and contribute nothing to increase
the objective values. When the seed pool becomes large, this
fixed initial population size is not enough. It lacks diversity
and cannot produce the optimal result. Therefore, we use
adaptive population size to handle these issues. Moreover, by
enabling the adaptive population size in MobFuzzN2, we use
the result of MobFuzzN2+APS to demonstrate the effectiveness
of this technique. MobFuzzN2+APS achieves greater values than
MobFuzzN2 in the three objectives.

Co-mutation operators are introduced in NIC. The original
mutation of NSGA-II does not apply to a fuzzing situation.
We remove the ineffective mutation operators in NSGA-
II. Moreover, we build connections between objectives and
mutation operators. The best operators are selected according
to the objectives. In Table IX, the comparison of MobFuzzN2

with MobFuzzN2+CMO demonstrates the effectiveness of the
co-mutation operators. All the objective values are greater in
MobFuzzN2+CMO.

In MobFuzzN2, the seeds generated in NSGA-II are in-
dependent of the seeds in the main fuzzing loop. Only at
the end of the evolutionary process, a small number of seeds
are saved to the main seed pool. This independence of the
main fuzzing loop wastes the executions during NSGA-II, and
it is the primary performance overhead in MobFuzzN2. We
propose a shared seed pool technique in MobFuzz to handle
this issue. This technique connects the NIC to the main fuzzing
loop and saves seeds during the evolutionary process of NIC.

In addition, by enabling the performance overhead reduction
in MobFuzzN2, the speed result of MobFuzzN2+POR is much
greater than MobFuzzN2. This demonstrates the effectiveness
of our overhead reduction techniques.

• Answer to RQ4: NIC can optimize the objectives without
introducing additional performance overhead.

F. MAGMA Data Set

MAGMA [30] is a newly proposed data set. It contains 7
projects with 19 target programs. MAGMA is a ground-truth
fuzzing benchmark based on real programs with real bugs,
which allows for a fair and accurate evaluation of fuzzers.

Baseline fuzzers to compare. Following the experiments
in the MAGMA paper, AFL[7], AFLFast[1], AFL++[31]
(with lto and cmplog enabled), FairFuzz[17], honggfuzz[32],
MOPT [33], and SYMCC [34] are used in our evaluation.
The AFL-based fuzzers use consistent settings: deterministic
and havoc. Using this configuration can comprehensively test
the vulnerability detection ability of MobFuzz compared with
state-of-the-art fuzzers.

We use seeds in the corpus directory provided by
MAGMA as the initial seeds. Our evaluations are conducted
on three servers for 10 times and 24 hours.

Experiments in this subsection also follow the configu-
ration in the MAGMA paper, which are divided into two
parts: 1) The number of bugs discovered by the fuzzers (the
unique bugs results counted by the MAGMA tool script).
Table X shows the results of bugs, and Table XI shows the p
values of the results. 2) Time to bug (the TTB results). Table
XII shows the TTB results, and Table XIII shows the p values
of the results. Additionally, the TTB results of each bug are
in Table XVIII and XIX in Appendix.

TABLE X. AVERAGE NUMBER OF MAGMA BUGS FOUND BY THE
FUZZERS

Targets AFL AFLFast AFL++ FairFuzz honggfuzz MOPT SYMCC MobFuzz
libpng 4.1 4.3 4.2 3.9 4.3 4.0 4.2 4.3
libtiff 8.3 8.0 8.2 6.9 6.0 7.5 6.7 8.5

libxml2 6.0 6.1 6.0 6.0 6.5 6.8 5.5 7.0
openssl 3.8 3.8 6.5 4.1 6.1 6.0 6.5 6.4

php 6.0 6.5 5.9 5.7 6.2 6.5 5.5 6.2
poppler 7.0 7.0 7.2 7.0 6.5 7.3 6.4 10.9
sqlite3 3.8 5.0 2.7 5.0 2.7 1.9 2.0 5.1

Average 5.6 5.8 5.8 5.5 5.5 5.7 5.3 6.9

1) Bug Count: Table X shows the bugs discovered by the
fuzzers, and Table XI shows the p values of these results.
According to the results, MobFuzz outperforms all the baseline
fuzzers in 4 out of the 7 projects. The average number of
bugs of MobFuzz is greater than other fuzzers. Additionally,
in sqlite3, MobFuzz has the maximum improvement against
the baseline fuzzers, which is about 3x better than MOPT.
One advantage of MobFuzz over AFL, AFLFast, FairFuzz,
honggfuzz, and MOPT is the satisfied comparison bytes Mob-
Fuzz concentrates on. By satisfying more bytes, some of the
MAGMA bugs can be triggered more easily in MobFuzz. For
instance, Bug SQL003 in Table XIX is only triggered when
if(!data) is satisfied. MobFuzz succeeds in 9 hours, and
others fail to.

AFL++ (cmplog enabled) and SYMCC can also solve
these comparison bytes. However, MobFuzz still outperforms
AFL++ and SYMCC in 6 out of the 7 projects. The reason is
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TABLE XI. P VALUES OF THE RESULTS IN TABLE X

Targets AFL AFLFast AFL++ FairFuzz honggfuzz MOPT SYMCC MobFuzz
libpng < 10−4 0.04 < 10−3 < 10−3 0.01 0.02 0.05 < 10−3

libtiff < 10−5 < 10−3 0.02 < 10−4 0.06 0.45 < 10−4 0.01
libxml2 < 10−5 < 10−4 < 10−3 0.06 < 10−4 < 10−3 0.03 < 10−4

openssl 0.03 < 10−4 0.08 < 10−3 0.01 < 10−3 < 10−3 < 10−4

php < 10−3 0.25 < 10−4 0.05 0.02 < 10−3 0.22 0.02
poppler < 10−4 < 10−3 0.02 0.07 < 10−4 0.03 0.01 < 10−5

sqlite3 0.07 < 10−3 0.02 < 10−5 0.27 0.19 < 10−4 < 10−4

that MobFuzz can optimize other objectives besides the com-
parison bytes, and AFL++ and SYMCC fail to. MobFuzz can
reach a large value of stack memory consumption according
to the above experiments. It helps MobFuzz trigger this kind
of bug in MAGMA. For example, Bug SQL012 in Table XIX
is a stack buffer overflow bug. MobFuzz successfully triggers
it in 3.2 hours, and AFL++ and SYMCC fail to.

Additionally, the p values in Table XI of MobFuzz are all
less than 0.05. However, some results of others are greater than
0.05, e.g., FairFuzz in libxml2. This demonstrates that all the
results of MobFuzz are statistically significant.

2) Time to Bug: Table XII shows the TTB results, and
Table XIII shows the p values of these results. Detailed
TTB results of each bug are in Table XVIII and Table XIX.
MobFuzz outperforms all the baseline fuzzers in 4 out of
the 7 projects. The maximum performance improvement is
in poppler compared with AFLFast, which is about 8x. As
for the average TTB, MobFuzz has the least TTB compared
with others. The reason is that MobFuzz optimizes execution
speed and satisfied comparison bytes, and these objectives
help to reach less TTB. According to the detailed results,
the maximum performance improvement is in Bug PDF007
in Table XIX. MobFuzz solves if(db→ init.busy) and
if(zObj == 0) in 2 minutes. AFLFast succeeds in 22.5 hours.

TABLE XII. TTB OF THE FUZZERS

Targets AFL AFLFast AFL++ FairFuzz honggfuzz MOPT SYMCC MobFuzz
libpng 1.6m1 1.7m 1.3m 1.7m 1.5m 1.6m 1.6m 1.3m
libtiff 68.3h2 108.0h 55.6h 105.5h 118.1h 69.2h 83.9h 41.1h

libxml2 2.2m 2.2m 2.2m 2.2m 53.7m 2.0m 1.8m 1.6m
openssl 2.5m 2.5m 1.6m 2.5m 2.4m 2.4m 2.4m 1.8m

php 4.9m 6.2m 4.9m 6.8m 5.7m 24.3m 10.1m 4.0m
poppler 68.1h 79.3h 48.3h 47.7h 64.7h 27.9h 34.7h 9.6h
sqlite3 220.9h 179.3h 90.7h 164.4h 126.0h 169.4h 127.3h 107.7h

Average 51.1h 52.4h 26.9h 45.4h 44.3h 38.1h 35.2h 22.7h
1 Smaller values are better. 2 “m” denotes minutes, and “h” denotes hours.

Moreover, the p values in Table XIII of MobFuzz are all
less than 0.05. However, some results of other fuzzers are
greater than 0.05, e.g., AFL in libtiff. This demonstrates
that all the TTB results of MobFuzz are statistically significant.

TABLE XIII. P VALUES OF THE RESULTS IN TABLE XII

Targets AFL AFLFast AFL++ FairFuzz honggfuzz MOPT SYMCC MobFuzz
libpng 0.05 0.42 0.03 < 10−3 < 10−4 0.02 < 10−3 0.03
libtiff 0.12 < 10−3 < 10−5 < 10−4 0.01 < 10−3 < 10−4 0.01

libxml2 < 10−5 0.03 < 10−3 0.04 0.01 < 10−4 0.29 0.03
openssl 0.33 < 10−4 < 10−4 0.03 0.01 < 10−5 < 10−4 < 10−5

php 0.03 < 10−4 < 10−3 < 10−5 0.02 0.07 0.01 0.02
poppler < 10−4 0.03 < 10−4 0.07 < 10−3 0.03 0.01 < 10−5

sqlite3 0.06 < 10−4 0.02 < 10−4 < 10−3 0.01 < 10−5 0.04

In conclusion, in the MAGMA data set, MobFuzz has better
bug detection ability and can find the bugs with less TTB
compared with the baseline fuzzers.

VI. DISCUSSION

A. Hyper-parameters

According to our design in Section III-B, we have 2
parameters in our MPMAB model. In Equation 2, λ controls

the penalty on objectives that slowdown the fuzzing process.
γ in Equation 4 determines the balance between exploration
and exploitation. In this section, we study how the parameters
affect the performance of MobFuzz.

TABLE XIV. AVERAGE VALUES OF OBJECTIVES OF THE 12 TARGET
PROGRAMS WITH DIFFERENT VALUES OF λ

Values of λ Speed Stack Cmp

0.00 998.01 1.02 ∗ 106 9.96 ∗ 107
0.01 1019.12 9.10 ∗ 105 9.71 ∗ 107
0.10 1147.51 8.72 ∗ 105 9.60 ∗ 107
1.00 1150.81 6.78 ∗ 105 2.38 ∗ 107
10.00 1155.22 3.66 ∗ 105 8.51 ∗ 106

Table XIV shows the average values of objectives of the 12
target programs with different values of λ. We choose 5 values
of λ to show the effect on the performance of MobFuzz. In
the Speed column, the execution speed of fuzzing increases as
λ increases. Ideally, we may choose the fastest configuration
(λ = 10.00) because we prefer speed in fuzzing as discussed
above. However, when the value of λ is greater than 0.10, the
values of stack memory consumption and number of satisfied
comparison bytes decrease rapidly, with approximately a 2x
decrease in the Stack column and a 12x decrease in the Cmp
column. Therefore, we balance the values of the objectives and
choose 0.10 as our configuration of λ.

TABLE XV. AVERAGE VALUES OF OBJECTIVES OF THE 12 TARGET
PROGRAMS WITH DIFFERENT VALUES OF γ

Values of γ Speed Stack Cmp

0.00 512.89 1.44 ∗ 106 2.09 ∗ 108
0.01 1147.51 8.72 ∗ 105 9.60 ∗ 107
0.10 1101.97 7.21 ∗ 105 7.55 ∗ 107
1.00 1122.09 7.96 ∗ 105 5.63 ∗ 107
10.00 1183.10 4.61 ∗ 105 1.07 ∗ 107

Table XV shows the average values of objectives of the
12 target programs with different values of γ. This parameter
controls the balance between exploration and exploitation in
Equation 4. Greater γ means more exploration, and less means
more exploitation. We study 5 different values of γ and how γ
affects the performance of MobFuzz. When γ is set to 0, the
model considers only exploitation, and objectives with greater
historical values will be assigned greater scores according to
Equation 4. In this situation, the number of satisfied compar-
ison bytes will get the greatest score since the Cmp values
are greater than other objective values. Therefore, it can reach
the value of 2.09 ∗ 108. As γ increases, there will be more
exploration. Objectives with smaller values will be assigned
greater scores as γ increases. We study different values of γ
and the values of the objectives. We finally choose 0.01 as the
configuration. This configuration can produce fast execution
speed with appropriate values of stack memory consumption
and number of satisfied comparison bytes.

B. Moving to More Objectives

We choose execution speed, stack memory consumption,
and number of satisfied comparison bytes as our objectives
in this paper, which is not to say that MobFuzz can handle
only three objectives. MobFuzz can be extended to optimize
more than 3 objectives with minor changes. For example, if we
want to add the number of vulnerable function calls as the 4th
objective in MobFuzz, we need to instrument the source code
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to record the vulnerable functions. Then, we need to modify
the number of objectives in the MobFuzz configuration. No
further modification is required to optimize these 4 objectives.

C. Threats to Validation

The randomness in fuzzing is the major threats to validation
[1], [10], [35], [17]. To solve this problem, we conduct
repeated experiments to calculate the average values. The p
values and Â12 values are given in our experiments to prove the
statistically significant difference. In addition, certain setups
of our experiments can be slightly improved. For example, we
only set 6 comparison selection strategies in Figure 4. More
strategies could be introduced in the experiments to enrich the
comparisons.

VII. RELATED WORK

A. MAB Model in Fuzzing

The MAB model deals with the problem of optimizing the
total reward in finite trials when we are making choices. In
fuzzing, there are many situations where we need to maximize
the reward. For example, the ultimate goal of fuzzing is to
expose as many bugs as possible. Woo et al. [36] modeled
the parameter configuration as the MAB problem to find more
bugs. However, in CGF, the idea of allocating more energy to
arms with more bugs will result in triggering the same bugs.
Therefore, the number of bugs is not included in our objectives
in MobFuzz.

Moreover, Patil et al. [37] formalized the process of assign-
ing executions to a test case (energy) as a contextual bandit
problem. They proposed a learned model through the policy
gradient method to control the energy. Yue et al. [10] improved
this model and proposed a variant of the adversarial MAB
(VAMAB) model. They explained the details of the fuzzing
process as a VAMAB model and considered the balance
between exploration and exploitation thoroughly. However, in
the situation of multiple objectives, we propose our MPMAB
model. In contrast to previous work, our MPMAB model deals
with the problem of multiple selections combined together.
When we have more than one decision to make, e.g., objective
combination selection and energy allocation, the classic MAB
model is inadequate. Our MLMAB model makes progress in
these multiple-selection scenarios.

B. MOO in Fuzzing

According to our investigation, there are three existing
fuzzing tools dealing with multi-objectives in fuzzing. Cerebro
uses the idea of the Pareto frontier and non-dominated sorting
in [12], as does our NIC algorithm. There are differences
between Cerebro and MobFuzz. First, Cerebro does not select
objective combinations. As discussed above, there are internal
relationships among objectives, which requires us to select the
most proper objectives in the current situation. The second
difference is whether the optimizing process is an evolutionary
procedure. In Cerebro, seeds go through non-dominated sort-
ing, and the Pareto frontier is calculated, which is currently the
optimal result. However, this process is only executed once in
a fuzzing cycle. We argue that it cannot produce the global
optimal solution. Calculating the Pareto frontier and reaching
convergence usually require more than 100 iterations through

the evolutionary process[12]. Additionally, MOOFuzz [38] has
a similar idea to that of Cerebro. Therefore, we argue that it
also cannot produce the global optimal solution.

In contrast to MOO in existing fuzzers, MobFuzz se-
lects objective combinations according to the fuzzing state
and integrates the evolutionary process into fuzzing with-
out introducing additional overhead according to our eval-
uation. Based on this, we can produce the global opti-
mal result for multiple objectives without incurring wasted
time. In regard to FuzzFactory (two-objective mode) [20],
it is more naive when handling multiple objectives. It uses
two continuous if statements to determine which is bet-
ter, which can be problematic. For example, it compares
seed X with Y by if(AX > AY){if(BX > BY){prefer X}} or
if(BX > BY){if(AX > AY){prefer X}}. Putting objective A in
front of B or vice versa will lead to incorrect objective
optimization. In contrast, MobFuzz produces the optimal value
through an evolutionary process and will not fall prey to the
above incorrect situations.

C. Power Schedule

The power schedule of CGF controls the number of muta-
tions and executions on a seed. The original power schedule of
AFL allocates more energy than is needed[1], [10]. AFLFast
[1] was the pioneering work in improving the power schedule
of AFL. It uses a transition probability model to describe
the relationship between program paths. AFLFast reduces the
energy consumption of AFL through a power schedule and
search strategy. Later, Yue et al. proposed EcoFuzz [10] to
describe the details in the transitions of paths and rewards
of seeds through a variant of the adversarial MAB model.
Based on the model, the fuzzing process is divided into
different states, and different energy values are allocated in
these states. Additionally, Entropic [28] proposes an entropy-
based power schedule to allocate more energy to seeds with
more information. In contrast, MobFuzz utilizes the MPMAB
model to solve two problems, including energy allocation.
First, objective combinations are selected. Next, it adaptively
allocates appropriate energy to seeds based on the selected
combination. Our key contribution is that we extend the power
schedule beyond the scope of path coverage. Both AFLFast
and EcoFuzz emphasize the path discovery ability of seeds
in energy allocation, and information entropy in Entropic is
also related to coverage. We design the power schedule to
allocate energy based on the objectives we selected. MobFuzz
can adjust energy more adaptively based on the current objec-
tives, which broadens the application scenarios of the power
schedule in CGF, and this is the key difference compared with
previous work.

D. Seed Selection

In the fuzzing campaign, the fuzzer needs to choose a seed
to fuzz when the previous round of fuzzing is finished. It is
important to select the best seed in the seed pool based on
the goal of the fuzzer. For example, AFL prefers a seed with
a faster execution speed and shorter length. When a seed is
marked as favored, it will be selected with a higher proba-
bility in the next round. Following AFL, MemLock [8] and
FuzzFactory [20] prefer seeds with more memory consumption
and more satisfied comparison bytes, respectively. However,
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both of them try to optimize only one objective when selecting
seeds. As discussed above, there are many situations in which
we need to optimize multiple objectives to find deeper bugs.
Using only one objective in fuzzing cannot reach the bugs
that require multiple triggering conditions. In contrast, we note
the lack of consideration and mis-handling of the multiple
objectives in CGF. Based on this, we design the MPMAB
model to adaptively select the objectives and allocate energy,
and we optimize the objectives with NIC. Furthermore, AFLGo
[39] and CollAFL [35] also select seeds with their specific
goals. However, they require complex program analysis to
finish the task. Unlike them, MobFuzz does not need additional
static analysis to optimize the objectives. IJON [40] proposes
an annotation mechanism to help the analysts select seeds and
guide the fuzzing process. Compared with it, MobFuzz is an
automatic fuzzing tool that requires no manual effort to guide
the fuzzing process.

VIII. CONCLUSION

In this paper, we propose MobFuzz to handle the problem
of multi-objective optimization in gray-box fuzzing. In Mob-
Fuzz, we design a multi-player multi-armed bandit model to
adaptively select the objective combinations and allocate en-
ergy to seeds. We also propose the NIC algorithm to optimize
the objectives without incurring additional performance over-
head. Based on the experiments on real-world target programs
and the MAGMA data set, we demonstrate the improvements
in MobFuzz in contrast to the baseline fuzzers.
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APPENDIX

A. Evaluation of the MPMAB Model

TABLE XVI. 12 REAL-WORLD PROGRAMS AND RELATED
STATE-OF-THE-ART PAPERS

Programs Papers and publication

avconv AFLSMART (TSE2019), MOPT (Security2019), Intriguer (CCS2019)
exiv2 CollAFL (S&P2018), SLF (ICSE2019), UNIFUZZ (Security2021)
infotocap MOPT (Security2019), EcoFuzz (Security2020), UNIFUZZ (Security2021)
mp42aac MOPT (Security2019), MemLock (ICSE2020), UNIFUZZ (Security2021)
mp4tag MemLock (ICSE2020), PANGOLIN (S&P2020), Fuzzguard (Security2020
nm Angora (S&P2018), FuZZan (Security2020), EcoFuzz (Security2020)
pdfinfo MOPT (Security2019), ProFuzzer (S&P2019), Fuzzguard (Security2020)
readelf Fuzzification (Security2019), MEUZZ (RAID2020), OptiMin (ISSTA2021)
tiff2pdf Steelix (FSE2017), GREYONE (Security2020), Intriguer (CCS2019)
tiff2ps QSYM (Security2018), Matryoshka (CCS2019), MEUZZ (RAID2020)
txtext ProFuzzer (S&P2019), Fuzzguard (Security2020), Ferry (Security2022)
xmllint AFLFast (CCS2016), Matryoshka (CCS2019), EcoFuzz (Security2020)

Table XVI lists the 12 real-world programs used in our
experiments and the related papers which used the programs.

Objective combination selection. Figure 7 shows the
percentages of the chosen objective combinations. Different
colors indicate different objective combinations.
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Fig. 7. Percentages of the chosen objective combinations. Different colors
indicate different objective combinations.
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Power Schedule. Figure 8 demonstrates the percentages of
exploration and exploitation states during fuzzing. Exploration
and exploitation can transfer to each other depending on
whether new seeds are generated. As we can see from the
figure, the percentages of different target programs are com-
pletely different. The number of total paths of the programs
differs. Therefore, the transformations between exploration
and exploitation are different. MobFuzz discovers new paths
more easily in some programs, and the state transfers to
the exploration state. If no new seeds are generated, the
exploitation state begins.

B. Evaluation on NIC

We propose our new strategy by selecting the mutation
operators with better historical performance. Figure 9 shows
the proportion of the selected operators. We can see that
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flipping 1 bit of the seed covers more than 50% of the figure,
which demonstrates the simplicity and effectiveness of the
bitflip operator.

Figure 10 shows the number of selections on the bytes
of seeds. (10, 999) indicates that the 10th byte of the input
is selected 999 times by the mutation operator. We also tend
to select the bytes with better historical performance in our
design. In the figure, bytes in the front positions of the seed
are more likely to be chosen, which implies that mutating
these bytes can bring more reward to the fuzzing process.
For example, the header of a JPEG file contains structural
information about the file. The header bytes are more important
than the subsequent bytes.

C. Bugs in the 12 Real-world Programs

Table XVII shows the real bugs discovered by MobFuzz
in the 12 real-world programs. These bugs are collected from
the unique crashes with the help of ASAN and GDB. In this
table, most of the bugs are overflow bugs. From this result,
we can see the vulnerability detection ability of MobFuzz.

TABLE XVII. BUGS DISCOVERED BY MOBFUZZ IN THE 12
REAL-WORLD PROGRAMS

Programs Bug description

infotocap heap-buffer-overflow in captoinfo.c in nc infotocap()
infotocap global-buffer-overflow in comp hash.c in nc find entry()
infotocap stack-buffer-overflow in infotocap
mp42aac heap-buffer-overflow in Ap4TrunAtom.cpp in AP4 TrunAtom()
mp42aac heap-buffer-overflow in Ap4Utils.cpp in SkipBits()
mp42aac heap-buffer-overflow in Ap4Dec3Atom.cpp in AP4 Dec3Atom()
mp4tag heap-buffer-overflow in Ap4ByteStream.cpp in WritePartial()
mp4tag heap-buffer-overflow in Ap4RtpAtom.cpp in AP4 RtpAtom()
mp4tag heap-buffer-overflow in Ap4Utils.h in AP4 BytesToUInt32BE
tiff2pdf heap-buffer-overflow in t2p read tiff size()
tiff2ps heap-buffer-overflow in tiff2ps.c in PSDataColorContig()

Moreover, MobFuzz can detect more unique bugs than the
baseline fuzzers.

D. Detailed TTB in the MAGMA Data Set

Table XVIII and Table XIX show the detailed TTB of
each bug in the MAGMA data set. In total, there are 118
bugs in the data set. The identification of each bug is in
the format of “Project+Number”, e.g., “PNG001” denotes the
1st bug in the libpng project. In addition, “PNG” denotes
libpng, “TIF” denotes libtiff, “XML” denotes libxml2, “SSL”
denotes openssl, “PHP” denotes php, “PDF” denotes poppler,
and “SQL” denotes splite3.
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TABLE XVIII. DETAILED TTB IN THE MAGMA DATA SET

Bug ID AFL AFLFast AFL++ FairFuzz honggfuzz MOPT SYMCC MobFuzz
PNG001 15.0s1 15.0s 10.0s 15.0s 15.0s 15.0s 15.0s 15.0s
PNG002 ×2 × × × × × × ×
PNG003 20.0s 20.0s 15.0s 20.0s 15.0s 15.0s 20.0s 10.0s
PNG004 15.0s 20.0s 15.0s 20.0s 20.0s 20.0s 20.0s 15.0s
PNG005 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 10.0s
PNG006 15.0s 15.0s 10.0s 15.0s 10.0s 15.0s 10.0s 15.0s
PNG007 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 10.0s

TIF001 23.3h 21.9h × × × × × 4.2h
TIF002 7.0m × 5.0h 8.3h × 4.5h 13.6h 2.2h
TIF003 2.0m 15.0s 15.0s 15.0s 15.0s 45.0s 15.0s 10.0s
TIF004 × × × × × × × ×
TIF005 × × 180 × 180 × × ×
TIF006 9.0h × 4.0m × × 11.8h 12.7h 3.0m
TIF007 1.0m 50.0s 15.0s 1.0m 15.0s 15.0s 15.0s 15.0s
TIF008 3.8h 6.0h × × × 4.0h 7.1h 3.1h
TIF009 6.7h 7.0h 2.4h 1.0h 22.5h 2.0h 2.1h 8.3h
TIF010 1.1h 1.0h 29.0m 27.0m 5.0m 13.0m 29.2m 4.0m
TIF011 × × × × × × × ×
TIF012 10.0s 10.0s 10.0s 10.0s 10.0s 10.0s 10.0s 5.0s
TIF013 × × × × × × × ×
TIF014 1.0m 50.0s 15.0s 1.0m 15.0s 15.0s 15.0s 15.0s

XML001 15.0s 15.0s 20.0s 15.0s 10.0s 15.0s 10.0s 15.0s
XML002 × × × × × × × ×
XML003 15.0s 15.0s 10.0s 15.0s 15.0s 15.0s 15.0s 15.0s
XML004 × × × × × × × ×
XML005 × × × × × × × ×
XML006 15.0s 15.0s 20.0s 15.0s 20.0s 15.0s 15.0s 10.0s
XML007 × × × × × × × ×
XML008 22.0s 20.0s 15.0s 20.0s 15.0s 10.0s 10.0s 15.0s
XML009 15.0s 15.0s 10.0s 15.0s 15.0s 15.0s 15.0s 5.0s
XML010 × × × × × × × ×
XML011 15.0s 15.0s 20.0s 15.0s 52.0m 15.0s 15.0s 10.0s
XML012 15.0s 15.0s 20.0s 15.0s 10.0s 15.0s 15.0s 15.0s
XML013 × × × × × × × ×
XML014 × × × × × × × ×
XML015 × × × × × × × ×
XML016 × × × × × × × ×
XML017 20.0s 20.0s 15.0s 20.0s 15.0s 20.0s 15.0s 10.0s
XML018 × × × × × × × ×
SSL001 20.0s 20.0s 15.0s 20.0s 20.0s 20.0s 20.0s 20.0s
SSL002 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s
SSL003 20.0s 20.0s 20.0s 20.0s 15.0s 15.0s 15.0s 10.0s
SSL004 × × × × × × × ×
SSL005 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 5.0s
SSL006 × × × × × × × ×
SSL007 × × × × × × × ×
SSL008 15.0s 15.0s 20.0s 15.0s 15.0s 15.0s 15.0s 10.0s
SSL009 15.0s 15.0s 15.0s 15.0s 10.0s 15.0s 15.0s 15.0s
SSL010 10.0s 10.0s 10.0s 10.0s 10.0s 10.0s 10.0s 5.0s
SSL011 × × × × × × × ×
SSL012 × × × × × × × ×
SSL013 × × × × × × × ×
SSL014 × × × × × × × ×
SSL015 × × × × × × × ×
SSL016 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 10.0s
SSL017 × × × × × × × ×
SSL018 × × × × × × × ×
SSL019 10.0s 10.0s 10.0s 10.0s 10.0s 10.0s 10.0s 10.0s
SSL020 15.0s 15.0s 15.0s 15.0s 20.0s 15.0s 15.0s 10.0s
SSL021 × × × × × × × ×
SSL022 × × × × × × × ×

1 “s” denotes seconds, “m” denotes minutes, and “h” denotes hours. 2 “×” denotes the fuzzer cannot
find the bug.
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TABLE XIX. DETAILED TTB IN THE MAGMA DATA SET

Bug ID AFL AFLFast AFL++ FairFuzz honggfuzz MOPT SYMCC MobFuzz
PHP001 × × × × × × × ×
PHP002 15.0s 15.0s 10.0s 15.0s 10.0s 15.0s 15.0s 10.0s
PHP003 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s
PHP004 15.0s 15.0s 15.0s 15.0s 10.0s 15.0s 15.0s 5.0s
PHP005 × × × × × × × ×
PHP006 15.0s 17.0s 15.0s 10.0s 10.0s 20.0s 10.0s 10.0s
PHP007 × × × × × × × ×
PHP008 × × × × × × × ×
PHP009 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 10.0s
PHP010 × × × × × × × ×
PHP011 10.0s 10.0s 15.0s 10.0s 10.0s 10.0s 10.0s 10.0s
PHP012 × × × × × × × ×
PHP013 × × × × × × × ×
PHP014 × × × × × × × ×
PHP015 3.0m 4.0m 3.0m 5.0m 4.0m 22.0m 8.0m 2.5m
PHP016 × × × × × × × ×
PHP017 10.0s 15.0s 10.0s 10.0s 10.0s 15.0s 15.0s 15.0s
PHP018 × × × × × × × ×
PHP019 × × × × × × × ×
PHP020 10.0s 15.0s 10.0s 10.0s 10.0s 15.0s 15.0s 10.0s
PHP021 10.0s 15.0s 10.0s 10.0s 10.0s 15.0s 15.0s 5.0s

PDF001 40.0s 35.0s 20.0s 35.0s 55.0s 35.0s 25.0s 15.0s
PDF002 3.3h 22.0m 48.0m 2.9h 15.2h 2.0m 1.9h 5.5h
PDF003 20.0s 15.0s 20.0s 15.0s 25.0s 15.0s 15.0s 10.0s
PDF004 × × × × × × × ×
PDF005 25.0s 20.0s 25.0s 20.0s 60.0s 20.0s 20.0s 15.0s
PDF006 30.0s 25.0s 30.0s 25.0s 20.0s 25.0s 20.0s 25.0s
PDF007 2.0h 22.5h 45.0m 3.0h 2.5m 4.0m 1.3h 2.0m
PDF008 25.0s 25.0s 15.0s 25.0s 25.0s 25.0s 20.0s 25.0s
PDF009 5.1h 55.0m 41.0m 40.0m 32.0m 50.0m 1.1h 30.0m
PDF010 7.1h 4.8h 1.0h 3.2h × 41.0m 1.3h 29.0m
PDF011 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 10.0s
PDF012 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s
PDF013 × × × × × × × ×
PDF014 20.8h 21.1h 3.2h 7.0h 51.0h 14.7h 3.3h 28.0m
PDF015 × × × × × × × ×
PDF016 3.6h 1.0h 1.0h 3.4h 3.3m 4.0m 41.7m 2.0h
PDF017 × × × × × × × ×
PDF018 × × 11.5h × × 12.0h × 1.0h
PDF019 4.4h 6.3h 2.0h 4.0h 12.0m 8.0m 1.4h 7.0m
PDF020 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s 15.0s

SQL001 × × × × × × × ×
SQL002 5.1h 23.0m 3.0m 28.0m 25.0s 1.0m 1.6h 4.0h
SQL003 × × 10.9h × × × × 9.0h
SQL004 × × × × × × × ×
SQL005 × × × × × × × 18.2h
SQL006 × × 1.0h 2.2h × × 4.0h ×
SQL007 51.0m 31.0m 3.0m 1.0h 20.0s 60.0s 59.1m 1.0h
SQL008 × × × × × × × ×
SQL009 × 8.7h 37.0m 18.0h 2.2h 38.0m 10.2h 13.0m
SQL010 12.6h 1.0h 12.0m 1.0h 25.0s 40.0m 2.0h 3.1h
SQL011 × × 12.8h × × × 13.5h 20.0h
SQL012 × × × × × × × 3.2h
SQL013 × × 18.0h × 3.0h × 20.1h ×
SQL014 × × 40.0m 20.9h 1.0h × 2.3h 30.0m
SQL015 5.0h 23.0m 3.0m 1.1h 25.0s 1.0m 58.0m 1.0h
SQL016 6.5h 1.0h 5.0m 57.0m 25.0s 3.0m 31.0m 20.0s
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