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Abstract: Cyber attacks against the web management interface of the IoT devices often cause
serious consequences. Current researches use fuzzing technologies to test the web interfaces of
IoT devices. These IoT fuzzers generate the messages (a test case sent from the client to the server
to test its functionality) without considering their dependency, which is unlikely to bypass the
early check of the server. These invalid test cases significantly reduce the efficiency of fuzzing.
To overcome this problem, we propose a stateful message generation (SMG) mechanism for IoT
web fuzzing. The SMG addresses two problems in IoT fuzzing. First, we retrieve the messages
dependency by using web front-end analysis and status analysis. These dependent messages,
which can easily bypass the server check, are used as a valid seed. Second, we adopt a multi-
messages seed format to preserve the dependency of the messages when mutating the seed to
get a valid test case, so that the test case can bypass the state check of the server to make a valid
test. Message dependency preservation is implemented by our proposed parameter mutation and
structural mutation methods. We implement SMG in our IoT fuzzer—SIoTFuzzer, which applies
IoT firmwares on the latest Linux-based simulation tool FirmAE. We test 9 IoT devices including
router and IP camera and adopt a vulnerability detection mechanism. Our evaluation results show
that (1) SIoTFuzzer is capable of finding real-world vulnerabilities in IoT device; (2) our SMG is
effective as it enables Boofuzz (a popular protocol fuzzer) to find command injection and XSS
vulnerabilities; and (3) compared to FirmFuzz, SloTFuzzer found all the vulnerabilities in our
benchmarks, while FirmFuzz found only four—the efficiency of our tool increased by 20.57% on
average.

Keywords: IoT Device;Web Management Interface;Stateful Message Generation (SMG);Messages
Dependency;Front-end Analysis;Multi-messages Seed Format;

1. Introduction

With the rapid development of the Internet of Things(IoT), more and more smart
devices are widely used, such as smart homes, routers, and IP cameras. The number of
global IoT connections continues to grow exponentially and will reach 25 billion by 2025.
A large number of vulnerabilities in IoT devices have been disclosed in recent years. For
example, at the 2013 Black Hat Conference, Heffner [1] demonstrated the overflow, hard-
coded password, and command injection vulnerabilities of a variety of web cameras,
involving D-Link, TP-Link, Linksys, and Trendnet equipment vendors. Attackers can
use these vulnerabilities to log in without authorization and hijack the real-time video of
the camera. Besides, real security incidents caused by security vulnerabilities are also
emerging in endlessly. In 2019, most areas in Venezuela including the capital Caracas
experienced a continuous power outage more than 24 hours [2]. The power outage
made the Caracas subway inoperable and caused large-scale traffic congestion, and
the Internet could not be used normally. Due to the long service life of IoT devices,
there are a large number of devices in the network that have not been maintained by
vendors. In the same year, a D-link product found an unauthenticated remote code
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execution vulnerability [3], which affected more than 10 products of related models, but
the product has been discontinued, D-link vendor did not release related patches, and
the vulnerability has not been fixed. This means that once this device is exposed, it is
very likely to become a zombie host and be used in attacks such as DDOS. As a result,
IoT security is increasingly becoming a topic of concern to researchers. It is an important
research field to detect the vulnerabilities of IoT devices in time.

However, due to the huge differences in hardware and software of IoT devices from
different vendors, it is difficult to build IoT vulnerability analysis models and establish a
unified dynamic simulation environment. The approaches to detect IoT vulnerability is
divided into static methods [4-6] and dynamic methods [7-9]. There are three steps in
the workflow. Firstly, testers need to collect firmware images from public channels, such
as online support service [10]. Secondly, these images are processed by unpacking tools,
such as Binwalk [11]. Thirdly, static methods or dynamic methods are deployed to detect
flaws in these unpacked files. These approaches suffer from known drawbacks. For
static methods, different IoT devices usually use different chipsets that have customized
features (e.g., instruction sets, memory layouts, and so on), so it is difficult to analyse
firmware binary due to the diversity of underlying architectures. And for dynamic
methods, on the basis of ensuring the correct operation of the device, it is complex to
monitor device, and the monitor imposes the overhead of vulnerability analysis.

Vendors usually use web and APP to provide users with operating interfaces. These
interfaces can directly operate the device, and their design standards evolve according
to the actual operation of the device. When the web and APP obtain user’s input, they
will send operation messages to device. After receiving messages, the device does more
further procedures according to the message content (e.g., executing a targeted program)
and the status of device will change with this process. If there is an implementation
flaw in the message parsing or the further procedure, a vulnerability may be exploited.
Therefore, an IoT device that has the web interface can be treated as a blackbox, and
feeding this box with malformed messages could trigger potential vulnerabilities of
it. Additionally, this blackbox fuzzing does not require the knowledge of underlying
architecture about the targeted device and there is no need to device monitor timely,
the fuzzing could keep a high throughput. However, blackbox fuzzing will generate
much more invalid test cases without feedback. At the same time, if the device does
not receive the stateful message and is not in a state of accepting messages, device
will refuse service or interrupt the connection. As a result, it is ineffective to continue
sending mutated messages. Furthermore, some message internal parameters depend
on the previous message, when these parameters are mutated, these messages will also
be rejected. According to these issues, detecting vulnerabilities through the blackbox
fuzzing is low in efficiency and effectiveness.

Motivated by the above description, this paper leverages generation-based fuzzing
technology to perform blackbox testing automatically. For improving the efficiency and
effectiveness of fuzzing, we propose a stateful message generation (SMG) mechanism,
SMG addresses two challenges including the status maintenance of device and the
mutation of parameter dependency messages. We analyse the front-end of IoT device’s
web interface to build initial seeds and generate test cases. Due to the difficulty of
firmware operation monitoring, we can analyse operating interfaces to obtain prior
knowledge. This knowledge will help us test device more comprehensively. We adopt a
multi-messages seed format, and every seed contains a complete sequence of operations.
Based on Boofuzz [12] (a popular protocol fuzzer) we design a black-box fuzzing tool
called SIoTFuzzer which could detect IoT device vulnerability. By building a simulation
environment, it is more suitable for analyzing the web management interface and
constructing the input of IoT device. Finally, vulnerabilities can be discovered through
device monitoring deployed in the system or built in the simulator.

In order to validate and evaluate this blackbox fuzzing, SloTFuzzer was designed
and implemented for discovering vulnerabilities in IoT devices automatically. To verify
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the improvement of our seed generation and mutation strategy, we set up a control
group to prove that our optimization is effective. Compared with FirmFuzz [13], the
latest device blackbox fuzzing test tool, SIoTFuzzer has a greater vulnerability discovery
capability.

In summary, we make the following contributions in this paper:

1.  For addressing two difficulties in detecting vulnerabilities of IoT device including
the status maintenance of device and keeping parameter dependency between
messages, we adopt the stateful messages generation (SMG). In addition, we adopt
a multi-messages seed format and deploy a corresponding mutation strategy to
guide fuzzing;

2. We design and implement a blackbox fuzzer SloTFuzzer for fuzzing IoT device.
Through analysis of device web interface, we can obtain prior knowledge of web
elements. SIoTFuzzer traverses the device web pages and gets the normal commu-
nication messages. These messages will be used to fuzzing;

3. Weevaluated SloTFuzzer on 9 IoT devices and 12 known vulnerabilities were found.
At the same time, we deployed our two optimizations on Boofuzz to conduct a
controlled experiment, and results show they improve the detection speed by
almost 61.99%. Compared with FirmFuzz, SloTFuzzer could indeed detect known
vulnerabilities much faster than FirmFuzz, and vulnerability detection time is
reduced by about 20.57% on average.

2. Background and Motivation

In this section, we introduce the background knowledge and motivation about
discovering vulnerabilities via fuzzing web management interface. For fuzzing IoT
device, we need to pay more attention to the following issues: 1. in the test preparation,
how can we get more prior knowledge from the web page and whether the method is
applicable to devices of different design specifications. 2. Based on issue 1, we need
to keep the connection between the fuzzer and the device, and ensure that mutated
messages are received by the device. These two issues will be explained in Section 2.4
below.

2.1. Web Interface in IoT Devices

Vendors usually provide users with a network interface for self-management. Al-
though there is no standard on how to implement this interface, many vendors prefer
to use web technology because of its flexibility and simplicity [14]. The web server is
mainly used for message transmission between the front-end and the device program
processor called pagehandler. The main workflow is shown in Figure 1. Firstly the
front-end gets the user’s inputs. Then the front-end packages these inputs into messages.
Secondly after decoding the message, web server passes the parameters to pagehandler.
Thirdly pagehandler returns the processing results which obtain the HTTP Status Code.
Finally, front-end receive the results and display them on the page.

Since the front-end is directly accessible, it is easier to analyse front-end than web
server or pagehandler. The front-end is composed of HIML codes, JavaScript codes,
CSS codes, and other static resources. All we need to analyse are HTML codes and
JavaScript codes. Then we can get page elements and function parameters. CSS codes
and other static resources mainly affect page layout and appearance. These codes
are useless to message generation. For IoT devices, the front-end generates message
sequence and transmit commands to the server. By using a variety of inputs, it may
cause vulnerabilities in the device.

2.2. Firmware Simulation

The previous research mainly adopted three methods for the operation of the
IoT devices: 1. physical objects; 2. semi-simulation(e.g., AVATAR [15]); 3. full system
simulation (e.g., Firmadyne [8]). In the test of real devices, IoT fuzzer [16] detects whether
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Device
request url,paramete
RequestDecode L 5
Web page Program
processor
response status code
€ ResponseEncode
Front-end Web server PageHandler

Figure 1. Workflow of web interface

the device is online by sending a heartbeat message, and every ten messages obtain a
heartbeat message. This method is suitable for detecting obvious crashes, and the next
time for test after crash requires device to restart, this time cost for restart is unacceptable.
As a study by Muench et al. [17] pointed out, because the IoT devices are slower than
desktop workstations or servers, a complete system simulation can produce the highest
throughput. For fuzzing, higher throughput means greater efficiency. At the same time,
it is convenient to monitor the simulation process. And when device crash, it can be
quickly restored by the snapshot.

Firmadyne is an automated and scalable system for performing emulation and dy-
namic analysis of Linux-based embedded firmware. It uses a modified kernel to support
MIPS and ARM architecture firmware for simulation. Firmadyne also has an extractor to
extract a filesystem and kernel from downloaded firmware and a basic automated anal-
yse to detect vulnerability. This script tests for the presence of 60 known vulnerabilities
using exploits from Metasploit. But in nearly 2,000 firmwares tested, only 16.28% can be
correctly simulated. Since our fuzzing test requires the network service of the device,
a low simulation success rate cannot bring better runtime environment support. The
subsequent improvement work, FirmAE [18] proposes arbitrated emulation to apply
failure handling heuristics to the emulation environment. FirmAE significantly increases
the emulation success rate (From Firmadyne’s 16.28% to 79.36%). Through FirmAE, we
can simulate most of the collected firmware.

2.3. Fuzzing Technology

Fuzzing is a software testing technique that can provide random input to programs
and has been proven to be effective in finding vulnerabilities in real programs. As
fuzzing is gradually used more in other fields, people hope to use this method to test
more complex objects, such as embedded devices, library functions, and file systems. For
these targets, the first focus is obtaining a stable operating environment, and the second
is establishing appropriate inputs for the target. In Table 1, we make a comparison with
five IoT firmware testing tools.

Table 1: Comparison of IoT firmware testing tools

Fuzzer Boofuzz  IoTFuzzer WMIFuzzer FirmFuzz Firm-AFL
[12] [16] [19] [13] [20]
Fuzzing Technique Blackbox Blackbox  Blackbox Blackbox Greybox
Hardware Support All Real Real Emulation Emulation
Protocol Support |[Need Template None HTTP HTTP HTTP
Message Dependency None None None None None
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As described in Section 2.1 and 2.2, because of the difficulty of firmware analysis
and the accessibility of front-end, most IoT tests adopt blackbox fuzzing. Boofuzz is a
protocol fuzzing tool based on Python language, it requires protocol templates. Writing
protocol templates could bring a large workload, but Boo fuzz is strongly extensible for
many kinds of scenarios.

2.4. Motivation

In Section 2.1, the web interface is used to accept the user’s inputs and translate
inputs into communication messages. These messages result in the change of device
state. When pagehandler accepts the error messages, it may cause the device to crash.
Generating mutated device messages is a major concern of tester. Due to the different
standards established by vendors in the protocol communication process between the
front-end and web server, the method of injecting mutated data into web page is often
used. However, with the application scenarios of IoT device shifting from LAN to WAN,
vendors are improving the security of their web interfaces, such as adding some kind of
security validation to the input field. From the code in Figure 2, lines 1-6 show the input
validation of web page, including XSS, special character, and invalid address check.
Every input which cannot pass validation will not be received by device. As a result,
the method of direct injection does not apply. Therefore, we can only use proxy server
to grab the normal messages. We need web crawlers to visit all pages of the device.
Through front-end analysis, input simulation, and click on page elements, we obtain the
normal device messages.

1 if (!isSafeforXSS(str)){...}

2 //XSS check

3 if (isValidCfgStr(’’, str, 256) == false || (str == ’’)) {...}
4 //special character check

5 if (!is_valid_ip(str,0)) {...}

6 //invalid address check

7 $.get("/get_sessionKey.asp", function(sessionKey){

8 page_val.sessionKey = sessionKey;

9 page_val.Addr = str;

0 setTimeout(’$.post("/page", page_val, function(){getTestInfo();});’,
300):1);

11 //sesssionKey check

Figure 2. Security validation of web page

In previous work, FirmFuzz [13] grabs the first message after a click operation and
mutates all of the message’s data field. FirmFuzz will generate hundreds of test cases
and send these requests to server at a time. As an operation always contains a message
sequence, a single message is just a part of the operation. And some messages are used
for device state transition. As shown in Figure 2 lines 7-10, this example shows that the
front-end needs to ask for a sessionKey of the current session to perform parameters.
The sessionKey is unique in every connection, and a single message without the key to
the parameter transmission will be rejected by web server. When generating a test case,
fuzzer need to request server for a unique key first, and then add it in message. Besides,
this session has a timeout so that we need to request server in every test case. If we
ignore device status and stateful messages, it will lead to two matters:

1. During the generation phase, if a test case lacks stateful messages, it will not bypass
the early check of the server;

2. During the mutation phase, only mutating all data fields of the message could
break parameter dependency between messages.

The forced mutation strategy will lead that too many invalid messages are generated,
and most of these mutated messages will be rejected by server. In general, for improving
the efficiency of fuzzing, we prefer to send more test cases in a period of time. However,
when most test cases are invalid, test cannot trigger vulnerability on the contrary.
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Through the above problems, fuzzer need keep the connection status and mutate
data field which has no dependency to make sure that web server receives all mutated
message. In Table 1, we list five fuzzing tools which can test [oT device, None of them
can deal with these two problems. In this work, we propose a stateful message generation
(SMG) mechanism to keep the device status and connection which is described in Section
3.

3. Stateful Message Generation (SMG)

In Section 3, we will introduce our pre-analysis process of the IoT device web
management interface, which is used to generate stateful messages to solve the device
status problem in Section 2. This process is divided into three parts: front-end analysis,
state analysis, and seed generation.

3.1. Front-end analysis

The front-end of the IoT device usually adopts the single-page mode. Each sub-page
of the page contains device information and corresponding Settings, which are filled in
and submitted by users to IoT devices. As shown in Figure 3, this is an administration
sub-page in the router management interface. The input elements on this page include
the device’s new password, IP address, subnet mask, and address fields. And the click
elements include three buttons.

Status  Internet Settings ~ Wireless Settings ~ Bandwidth Control ~ Parental Controls ~ Sleeping Mode  Advanced IPv6 [EEGINIRISIENTh]

Login Password

LAN Parameters

LAN IP Address 192.168.0.1
Subnet Mask 255.255.255.0
DHCP Server 2 Enable

Start IP Address 192.168.0. 100

End IP Address 192.168.0. 200

Device Management

Reboot Router Reboot

n ol

Figure 3. The administration setting of a router

The elements that affect page changes mainly include link and button elements.
The link element only needs to be clicked to trigger the server response. The button
element may need the corresponding form content to trigger. The current analysis tools
for device webpages mainly crawl the links on the page and then enter the page under
the link for further operation. However, the web page still has many pop-up windows
or implicit links that need to trigger through click, which cannot be obtained by simple
page analysis. At this point, our work improved on the page crawler. The link elements
are classified as click elements. By identifying all click elements, all page jump actions
are triggered by clicking instead of jumping through links. Before the page jump occurs,
it is necessary to identify all input elements and click elements on the page and fill the
input elements. For every page, we maintain a clicked queue to make sure trigger all
operations.

The front-end analysis is divided into three steps:
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1 <form class="form-horizontal" id="loginPwd'>

2 <h2 class="legend">Login Password</h2><fieldset>

3 <div class="form-group none'" id='"oldPwdWrap" style='"display: none;">

4 <label for="oldPwd">0ld Password</label>

5 <input type='"password" id="o0ldPwd" name="oldPwd"></div></div>

6 <div class="form-group'>

7 <input type='"password" id="newPwd" name="newPuwd"></div></fieldset>

8 </form>

9 <form class="form-horizontal" id="lanParame">

10 <div class="form-group'>

11 <input type='"text" id="lanIP" name="lanIP" >

12 <input type="text" id="lanMask" name="lanlMask'>

13 <span class="ipNet">192.168.0.</span>

14 <input type="text" id="lanDhcpStartIP" name="lanDhcpStartIP">

15 <span class="ipNet">192.168.0.</span>

16 <input type="text" id="lanDhcpEndIP" name="lanDhcpEndIP"></div>

17 </form>

18 <div class="form-horizontal" id="devicelManage'>

19 <form name="rebootfrm" method="post" action="http://192.168.0.1/goform/
sysReboot'>

20 <div class="form-group">

21 <button type='"button'" name="reboot" id="reboot">Reboot</button></
div></form>

22 </div>

23 <button id="submit'">0K</button><button id="cancel'>Cancel</button>

Figure 4. The code of the administration setting web page

1.  Determine whether to enter a new page that has never visited; We need to identify
the current page elements and create the lists of input and click elements. These
element lists will not be released until the end of analysis.

2. Fillin the input elements and create a dictionary library to match the element names
with certain rules. The code in 4 corresponds to the device page in Figure 3, where
in lines 1-20 are the input elements on the page. Our page elements filling uses
certain rules to match the type of data, including address, character, and number,
select data from the dictionary to fill it. The element oldPwd in lines 3-6 is not a
form element, so it will not appear in the generated message parameters; if the
server lacks verification of such parameters when they are added to the message,
the server may crash. We call this type of input element non-form input, and
we need to record these id and type information to add these parameters to the
mutation.

3. Click on the link or button while recording the page status. Each click may cause a
change to the page. At the same time, we need to use an agent to record the data
sequence corresponding to this change

3.2. State Analysis

In order to keep the connection between the server and the fuzz process, it is
necessary to maintain the state of the device to receive the mutated message. As shown
in Figure 5, the states mainly include authorize, wait, and action. when the web server
receives parameters, the device needs to be authorized, and then the front-end can send
messages until timeout.

In state analysis, firstly, we should make the device status change from waiting to an
authorization. we need to capture the authorization messages and replay these message
to device. Secondly, the web server sends the operation messages. A page operation may
include the interaction of multiple messages. The traditional fuzzing tool is used a single
message to construct a test case. This method cannot handle the vulnerabilities that
may be caused by the complex message process. Fuzzer will generate a large number
of invalid test cases that are rejected by the server. To solve this problem, each time we
analyse the device state, the operation sends a message sequence that corresponds to a
page operation. The message sequence from the wait to the end of the operation is what
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element is clicked, the message sequence starts to be obtained until the operation finish.

275

281

282

283

284

285

286

290

291

292

293

295

296

297

other requests

auth requests operation requests

operation requests

action

session termination or error

Figure 5. State transition of the device.

3.3. Seed generation

Through state analysis, we get the sequence of messages corresponding to an

operation, filter the useful messages, and reconstruct the seeds. First, we need to filter
the messages, only keep the GET and POST requests in the HTTP request, and remove
the GET request for web resources, in Figure 6b is the specific format of the seed message;
second, we need to combine the filtered messages to form a seed. We divide the messages
that make up the seed into four categories:

1.

2.

3.

Authorization message: it is used to authorize the device so that subsequent
messages can be accepted by the web server;

Independent reference message: it is a single message used to transmit parameters
to the server;

Multi-step reference message: according to the device rules, the client may need
to initiate a verification request before transmitting parameters to the server, so a
multi-step reference message consists of multiple messages containing verification
information;

Payload message: in our research, the trigger link of some vulnerabilities is inacces-
sible, so we collected some payload messages about vulnerabilities in IoT devices
to trigger certain vulnerabilities that cannot be accessed from the page. Note that
the payload message is mainly used for mutation and does not constitute the initial
seed.

| head | < body |
initial message independent/multi-step message
(a)
GET /PATH?P0 = AAA&P1 =1 POST /PATH HTTP/1.1
HTTP/1.1
Content—Length:
Content—Length: Content—Type:
Content—Type: application/x—www—form—urlencoded

application/x—-www—form-urlencoded
PO =AAA&P1 =1

(b)

Figure 6. (a)The structure of the multi-messages seed.(b)The format of messages consisting seed.

As shown in Figure 6a, for each initial seed, it can be divided into two parts, head,

and body. The head must be the initial message, and the body can contain several
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Figure 7. Framework of SloTFuzzer

independent messages and multi-step messages. Then put the generated seed into the
seed pool and wait for seeds to be selected and mutated.

4. Framework of SIoTFuzzer

The Framework of SloTFuzzer is described from two main aspects in Section 4. As
shown in Figure 7, after simulating the IoT device, SIoTFuzzer selects a seed in order
from the seed queue which has been generated in Section 3. Next, SloTFuzzer mutates
seed with parameter mutation and structural mutation. Then we generate test cases and
perform vulnerability testing on the server. At the same time, SIoTFuzzer monitors the
status of the device. We will describe the process in detail in Section 4.1 and 4.2.

4.1. Mutation Strategy

According to the seed format used in Section 3, There are multiple messages in a
seed, and it is unknown which message with mutated content can trigger a vulnerability.
As shown in Algorithm 1, the mutation strategy is proposed to perform the fuzzing.
There are two phases including determined phase and random phase. The determined
phase is divided into two stages: parameter mutation and structural mutation.

4.1.1. Parameter Mutation

Parameter mutation is used to trigger memory-related vulnerabilities and command
injection vulnerabilities. To ensure that the message sequence is completely accepted and
data is transmitted to the device server, we mainly mutate the message parameter. For
protocol messages, a parameter usually contains nodes and values. Therefore, Parameter
mutation includes parameter node mutations and value mutations. Before the mutation
proceeds, the parameters in the message need to be parsed with a parameter dictionary.
In particular, when multi-step messages are mutated, we mark the verification message
and verification field and do not mutate this part. We adopt node mutation first and
then value mutation.

For node mutation, we randomly select a parameter position, and perform the
following operations on this parameter node:
¢ N1: delete this node;

*  N2: repeat this node. The purpose of this step is to test whether the server will
generate an error if a parameter is assigned multiple times in a statement;
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22 ®  N3: select one parameter from the non-form parameter library and insert it at this

320 position. If the server lacks verification of the non-form parameter and an illegal
330 value is passed in, the device will crash.
331 For value mutation, we randomly select a parameter position, and perform the

;2 following operations on the value of this parameter node:

a3 ® VI extend the data content. This step includes two methods. The first is to

334 increase the data length for the data content in the form of characters. This step
335 generally uses multiple copies of the original string or directly fills a character to
336 the maximum length to trigger the buffer overflow vulnerability; Second is to add
337 execution commands after the data, including ping, reboot, or execute a script.
338 Before the device simulation runs, we will execute the script into its file system.
39 ®  V2: clear the data content. If the web server lacks non-empty verification, this
340 operation will trigger related vulnerabilities;

a1 ®  V3: replace digital data in the boundary integer. This operation might trigger
342 possible data verification errors. The HITTP protocol is a text-based protocol, so we
343 use regular matching to determine whether the parameter may be a digital type.
e The digital data will be replaced with classic boundary integer numbers: 2/, 2/ — 1,
345 and 2/ + 1, where 0 < i < 32.

s ® V4 change the content type. This operation might trigger vulnerabilities about
347 assumptions on the data type. The content type of the replacement value has
348 triggered type assumptions. For example, replace the type of digital data with the
349 data in the form of ASCII code. It may cause a crash when the data is processed as
350 a number type.

ss1 4.1.2. Structural Mutation

352 Structural mutation is to mutate the structure of multi-messages seed. For the deter-
353 mined phase, we only randomly select a body massage to ensure that the authorization
35« messages remain unchanged. The following four mutation strategies are used:

s ¢ S1: exchange the message adjacent to this position;
s ®  S2: repeat the message at this position;

S3: delete the message at this position;

S4: add the payload message after the position.

w

a

N
°

w

a

©
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Table 2: The examples of the mutation algorithms

# Operation Before After
Nod N1 PO=AAA&P1=0 PO = AAA
ode N2 PO=AAA&P1=0 PO=AAA&P1=0&P1=0
Mutation
N3 PO=AAA&P1=0 PO=AAA&P1=0&P3=1
Vi PO=AAA&P1=0 PO=AAAAAA./test.py&P1=0
Value V2 PO=AAA&P1=0 P0=&P1=0
Mutation V3 PO=AAA&P1=0 PO=AAA&P1=2!
V4 PO=AAA&P1=0 PO=AAA&PI=AAA
S1 M1;M2;M3; M1;M3;M2
Structural S2 M1,M2;M3; M1;M2,;M3;M3;
Mutation S3 M1;M2;M3; M1,M2;
S4 M1;M2;M3; M1;M2;M3;Payload;
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Table 2 summarizes the seed mutation algorithms supported by determined phase
with examples. determined phase assigns each algorithm a specific weight at runtime.
We empirically set structural mutations with low priority, as the wrong structures
generally lead to rejection by the server.

In random phase, from all the mutation strategies described above, we randomly
select multiple mutations, mutate the seeds in the order of selection, at the same time
add the initial message to the mutation sequence.

Algorithm 1 SeedMutation(Seed, N-Mutation, V-Mutation, S-Mutation)

Input: the set of seed messages, Seed;
the set of node mutation method, N-Mutation{ N1, N2, N3};
the set of value mutation method, V-Mutation{V1,V2,V3,V4};
the set of structural mutation method, S-Mutation{S1, 52,53, 54},
/ /determined phase
seed; = random(Seed) // randomly select a seed
split Seed; to messages set {M1,My,...,M;}
for each M; '= M; and M; ¢ M do
P = message-parameter(M;) // get the set of parameters from message
P; = random(P) // randomly select a parameter
for each Mutation € { N-Mutation, V-Mutation} do
Mu; = random(Mutation) // randomly select a mutation method
P; = mutation(Mu;, P;) / /mutate the message parameters
end for
S; = random(S-Mutation)
seed; = mutation(S;, seed;) / /mutate the structural of seed
end for
Testcase = Script-generated(Seed;)
result = sending-detection(Testcase)
if interesting(result) then
alert(result)
end if
//random phase
for M; e M do
operation = random(N-Mutation, V-Mutation, S-Mutation)
Testcase = mutation(operation, Seed;)
end for
Testcase = Script-generated(Seed;)
result = sending-detection(Testcase)
if interesting(result) then
alert(result)
end if

4.2. Vulnerability Detection

In vulnerability detection, we can monitor the firmware from two aspects: 1. The
response from the server. 2. The status of the firmware simulation. For memory-related
vulnerability detection, the detection mechanism based on server feedback is faster
than the status monitor. By the HTTP status code in response, we can roughly judge
whether the device has obvious errors. When an exception occurs to the device, the
server’s response may include: 1. normal response; 2. error response; 3. no response.
For error response, if the crash causes the connection interrupted, the user will not
access the server. At the same time, the simulation will also make obvious mistakes. For
normal response and no response, we can further monitor the process status through
instrumentation.

For command injection, it is more difficult to be monitored by command injection
attacks for real devices. For firmware simulation, the specified executable file is placed
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in the firmware file system before the simulation. Run the command of the file and
check whether the command injection is successful or not by checking whether the file is
executed.

5. Implementation and Evaluation

We present the prototype implementation of SloTFuzzer in Section 5.1 and the
evaluation in Section 5.2.

5.1. Implementation of SIoTFuzzer

SloTFuzzer was implemented with around 5,000 Python lines of code in total. Also,
several open-source projects (e.g., Chrome, Boo fuzz [12], Mitmproxy [21], Pyppeteer [22])
are integrated into this fuzzer to avoid reinventing the wheel.

In the seed generation phase, the front-end analysis was built based on Chrome and
its Pyppeteer driver. Python code was written to use the Pyppeteer driver to control the
Chrome behavior, such as opening a URL, inputting data, and clicking a button. The
mitmproxy project, an HTTP proxy written in Python code, was extended to filter useless
messages and generate initial seeds.

In the fuzzing phase, Python code was written to schedule the fuzzing, convert
the seed to the Boofuzz test script and we modified the mutation code of Boofuzz. The
response message is analysed to get parameter dependency and whether the device
crash.

5.2. Evaluation of SIoTFuzzer
5.2.1. Testing Devices

We crawled firmware images through the official websites of various vendors for
simulation, and crawled more than 30 device images, including 9 devices that have
web interfaces and can be successfully simulated. The detailed specifications of these
images and whether they can be successfully simulated by Firmadyne and FirmAE are
described in Table 3.

Table 3: Summary of IoT devices with firmware simulation

Type ‘ ‘ Vender Device Firmadyne FirmAE
D-Link DSL-3782 Yes Yes
D-Link DIR-822 Yes Yes
D-Link DIR-823G Yes Yes
D-Link DIR-865L Yes Yes

Router
D-Link DAP-2695 Yes Yes
TP-Link WR940N Yes Yes
Netgear WNAP320 No Yes
Trendnet TEW-652BRP No Yes

IP Camera | Trendnet TV-IP110WN No Yes

5.2.2. Testing Environment

The SloTFuzzer and the other two fuzzers run in separate virtual machines that
host Ubuntu 18.04 with an Intel Core i9 quad-core 3.6 GHz CPU and 8G RAM. Each
virtual machine builds a FirmAE simulation platform. For our seed generator, it is only
deployed on our tool, and the generated seed file can be directly transferred to the tool
on other virtual machines.

We deploy FirmFuzz and Boo fuzz respectively on the other two virtual machines.
For FirmFuzz, we do not make any changes and maintain its normal operation. For
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Boofuzz, we extend our function of seed generation and monitoring strategy on it to
create two versions: Boofuzzg and Boofuzzyy.

5.2.3. Research Questions

Using the previous experiment setup, we would like to answer the following ques-
tions:

*  Q1: how effective is SIoTFuzzer in finding real vulnerabilities in IoT firmware?

*  Q2: how about the suitability and effectiveness of our seed generation function and
fuzzing scheduling?

*  Q3: can SloTFuzzer outperform the IoT fuzzing tool FirmFuzz in detecting vulnera-
bilities?

Effectiveness of Vulnerability Detection (Q1): Table ?? lists the vulnerabilities
discovered by SloTFuzzer. For each device under test, SloTFuzzer uses SMG to automat-
ically generate initial seeds within 1 hour, and next start fuzzing within 24 hours. Finally,
it found 12 vulnerabilities: 7 buffer overflows, 3 command injections, and 2 XSSs. These
results show that SlIoTFuzzer can automatically detect device vulnerabilities based on
our SMG mechanism and decive monitor.

Table 4: List of discovered known vulnerabilities

Vulnerability Device Exploit ID
D-Link DSL-3782 CVE-2019-7298
D-Link DIR-822 CVE-2019-6258
Buffer Overflow Trendnet TEW-652BRP CVE-2019-11400
TP-Link WR940N CVE-2017-13772
Netgear WNAP320 CVE-2016-1555
D-Link DAP-2695 CVE-2016-1558
Trendnet TV-IP110WN CVE-2018-19240
Trendnet TEW-652BRP CVE-2019-11399
Command Injection D-Link DSL-3782 CVE-2018-17990
D-Link DIR-823G CVE-2019-7297
XSS D-Link DSL-3782 CVE-2018-17989
D-Link DIR-865L CVE-2018-6529

Effectiveness of the Optimizations (Q2): In order to evaluate the effectiveness of
our optimizations, we set up three control groups. The specific settings are as follows:
for the original Boo fuzz, we use the original messages which were analysed through the
front-end as the initial seed to test the device; for Boofuzzg, add the SMG to test, and for
Boofuzzy, add the mutation strategy. The experiment time is 24 hours. The results are
shown in Table 5.

We performed a further manual analysis and found the following:

(1) for comparing Boo fuzz with Boo fuzzg, when detecting buffer overflow vulnerabili-
ties, Boofuzz is able to detect independently, but it is unable to cause crashes which are
triggered by dependency messages.

(2) for comparing Boo fuzzg with Boo fuzzys, through adding the mutation strategies, we
can cause command injection and XSS. But without device monitor, command injection
cannot be detected. These results show that our optimization can help us to find more
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Table 5: Control experiment of fuzzing tools
Exploit ID Vulnerability Boofuzz Boofuzzg Boofuzz); SIloTFuzzer
CVE-2019-7298 Buffer overflow N/A 1h14m 1h05m 1h19m
CVE-2019-6258 Buffer overflow N/A 1h35m 1h26m 1h39m
CVE-2019-11400 Buffer overflow 3h47m 1h26m 1h23m 1h42m
CVE-2017-13772 Buffer overflow 3h34m 1hl4m 56m 1h01m
CVE-2016-1555 Buffer overflow 1h14m 43m 36m 39m
CVE-2016-1558 Buffer overflow 1h31m 45m 37m 41m
CVE-2018-19240 Buffer overflow N/A 1h02m 49m 52m
CVE-2019-11399 | Command injection N/A N/A N/A 2h45m
CVE-2018-17990 | Command injection N/A N/A N/A 2h21m
CVE-2019-7297 | Command injection = N/A N/A N/A 3h01lm
CVE-2018-17989 XSS N/A N/A 2h40m 3h1lm
CVE-2018-6529 XSS N/A N/A 2h33m 3h05m

1 Boofuzzg: Boofuzz with comprehensive seed;
2 Boofuzzp: Boofuzzs with mutation strategies;
3 SIoTFuzzer: Boo fuzzp with device monitor;

vulnerabilities. And compared Boo fuzzy; with Boo fuzz, The stateful message and mu-
tation strategy could improve the detection speed by 61.99%,

(3) SloTFuzzer takes more time than Boofuzzy to find vulnerabilities. The discovery
time was increased by about 11.42%. Due to our device monitor, for every test case, we
need to read the simulation log and find the possible vulnerability. These operations will
cause the time consumption.

Compare with the FirmFuzz (Q3): In order to evaluate the efficiency and the
effectiveness of SloTFuzzer, we compare it with FirmFuzz. Every tool runs within 24
hours.

Table 6 lists the efficiency of vulnerability detection by FirmFuzz and SloTFuzzer.
We performed a further manual analysis and found the following:

(1) FirmFuzz can only find four vulnerabilities, and the most common vulnerability
found is buffer overflow.

(2) In the total execution time, SloTFuzzer is 17.64% to 23.53% faster than FirmFuzz.
These results indicate that our work can find more vulnerability and detection time is
reduced by about 20.57% on average.

6. Discussion and Limitations

Although SloTFuzzer can discover vulnerabilities in IoT devices efficiently, there
are still some avenues for future improvements.

6.1. Scope of Test Targeted

There are limitations in not only the firmware simulation but also the testing pro-
tocols. Although FirmAE brings great improvement in simulation success rate, there
are still lots of devices cannot be simulated for the different architecture, filesystems or
other reason. To solve this problem, semi-simulation is promising. SloTFuzzer or other
IoT fuzzing tools mainly focus on HTTP protocol, but some protocols like FTP, SSH,
or Telnet lack the fuzzing strategies. Combining with machine learning and protocol
identification may be the solution to this issue.
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Table 6: Statistics on vulnerability detection

Exploit ID FirmFuzz SloTFuzzer improvement
CVE-2019-7298 N/A 1h19m N/A
CVE-2019-6258 N/A 1h39m N/A
CVE-2019-11400 N/A 1h42m N/A
CVE-2017-13772 | 1h15m 1h01m 18.67%
CVE-2016-1555 51m 39m 23.53%
CVE-2016-1558 53m 41m 22.64%
CVE-2018-19240 | 1h03m 52m 17.64%
CVE-2019-11399 N/A 2h45m N/A
CVE-2018-17990 N/A 2h21m N/A
CVE-2019-7297 N/A 3h01m N/A
CVE-2018-17989 N/A 3h1lm N/A
CVE-2018-6529 N/A 3h05m N/A

6.2. Fuzzing Strategy Optimization

We generation more comprehensive seeds to obtain better test results, but we use a
random method for seed selection in each test case. The probability of selecting seeds is
the same without distinguishing the priority of the seeds. We will follow up using the
coverage guide method. Through the analysis of the simulated firmware process, the
priority of the seed will be evaluated before the fuzzing test. After the pre-run, the seed
which can call more processing functions will be selected first.

6.3. Timely Firmware Monitoring

After the web server transmits the parameters, it has taken a long time for the device
to process the parameters. While the device is processing wrong, the fuzzer has sent
some new messages during this time, so the message that triggers the vulnerability needs
to be manually located. The testers need to determine the cause of the vulnerability.
In order to better locate the error message in the follow-up, a fine-grained monitoring
method will be implemented through firmware instrumentation, which makes it easier
to find the vulnerability.

7. Related Work

With the increasing number of IoT security issues, fuzzing techniques are proposed
to find the IoT devices vulnerabilities in an automatic manner, including mutation-based
fuzzing and generation-based fuzzing.

7.1. Mutation-based fuzzing

Since most network-enabled devices will communicate with an external entity, some
works are presented to fuzz these communication protocols for vulnerability discovery.
RPFuzzer [23] is a blackbox fuzzing framework to detect vulnerabilities in Cisco routers,
and it used a predefined data model to generate seeds for mutation-based fuzzing. The
main challenge is that it requires a security expert to write the data model, so it cannot
be leveraged to test other devices automatically. Wang et al.[19] presented WMIFuzzer,
a mutation-based blackbox fuzzer targeting the web management interface in COTS IoT
devices; a weighted message parse tree (WMPT) was proposed to guide the mutation
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to generate mostly structure-valid messages. However, WMIFuzzer does not have the
support for local monitoring. And fuzzing for test real device, WMIFuzzer do not have
a high throughput because the connection of the test is often interrupted. However,
these works impose overhead on the device’s startup and rebooting for each fuzzing
session. In order to improve this problem, through the firmware simulation, rebooting
device from snapshot could reduce overhead. Zheng et al.[20] presented Firm-AFL, the
mutation-based greybox fuzzing platform for IoT firmware which aims to minimize
each fuzzing iteration overhead so that the fuzzer can test more test cases in the same
unit of time. It proposed a novel technique, augmented process emulation to achieve
high throughput fuzzing by running the target program in a user-mode emulator and
switch to a full-system emulator when the target program invokes a system call that
has specific hardware dependencies. This work resolved the performance bottlenecks.
However, Firm-AFL focuses on the coverage of a single program and does not care
about the communication process, so the increase in the coverage of a single program is
difficult to trigger inter-program vulnerability.

7.2. Generation-based fuzzing

Chen et al. [16] presented IoTFuzzer that performs a protocol-guarded fuzzing
on COTS devices; its key idea is that many IoT devices can be controlled through
their official mobile apps. So, they firstly adopted a taint-based approach to track the
atomic data that are used to construct the network message; then, they mutated these
atomic data dynamically to reuse the original code of message building. However,
not all IoT devices have an official control app, and IoTFuzzer can just detect memory
corruption. After that, Costin et al. [14] presented an automated framework to discover
vulnerabilities in web interfaces of embedded devices; it works by integrating Qemu
to run the web service and testing the web service via existing web penetration tools.
Although it used some heuristic techniques to run chroot and init to launch the web
service, it may fail because of the side effects of forced emulation, diversity of web
server environment, and limitations of Qemu. Based on this automated framework,
Prashast et al. [13] presented FirmFuzz, a fuzz testing of embedded firmware images.
Closest to our work, FirmFuzz detects IoT device vulnerabilities via the web interface.
It is a generational fuzzer for syntactically legal input generation that leverages static
analysis to aid fuzzing of the emulated firmware images while monitoring the firmware
runtime. FirmFuzz mutates communication messages by collecting payloads that can
trigger vulnerabilities. However, it does not care about mutation strategy, and hence
the chance of detecting a vulnerability is relatively low. Compared with above blackbox
fuzzing works, SloTFuzzer pays more attention on communication process. Through
the front-end analysis and state analysis, SlIoTFuzzer generates comprehensive seed
messages targeting different web interfaces. And more pertinency mutation strategies
can trigger more vulnerabilities.

8. Conclusion

We present SloTFuzzer, an automated framework to fuzz the web interface of IoT
device based on whole-system emulation. We adopt the function of stateful message gen-
eration (SMG). These messages consisting seed could basically cover all page operations
and make the device normal state transition. Then we design a multi-messages seed
format to improve the probability of being received mutated messages by devices. At
the same time, Our mutation strategy could contain the parameter dependency between
messages.

We used SloTFuzzer to test for three types of vulnerabilities in the firmware images
that we studied: buffer overflow, command injection, and XSS. To evaluate the effec-
tiveness and the efficiency of the SloTFuzzer, we test 9 IoT devices and finally found
12 vulnerabilities. Through control experiments, we proved our optimizations are effi-
cient. The stateful message and mutation strategy could improve the detection speed by
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sa0 61.99%, and our device monitor could issue the error warning in time. Compared with
sso Firmfuzz, the results showed that SIoTFuzzer could indeed detect known vulnerabilities
sss much faster than FirmFuzz, and vulnerability detection time is reduced by about 20.57%
ss2  ON average.
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sea The following abbreviations are used in this manuscript:

TIoT Internet of things

SMG Stateful Message Generation
DDoS  Distributed Denial-of-service
HTML Hyper Text Markup Language
CSS Cascading Style Sheets

CVE Common vulnerabilities and exposures
XSS Cross-site Scripting

HTTP  HyperText Transfer Protocol
FTP File Transfer Protocol

SSH Secure Shell

COTS  Commercial Off-the-shelf
CPU Central Processing Unit
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