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Abstract: Cyber attacks against the web management interface of the IoT devices often cause1

serious consequences. Current researches use fuzzing technologies to test the web interfaces of2

IoT devices. These IoT fuzzers generate the messages (a test case sent from the client to the server3

to test its functionality) without considering their dependency, which is unlikely to bypass the4

early check of the server. These invalid test cases significantly reduce the efficiency of fuzzing.5

To overcome this problem, we propose a stateful message generation (SMG) mechanism for IoT6

web fuzzing. The SMG addresses two problems in IoT fuzzing. First, we retrieve the messages7

dependency by using web front-end analysis and status analysis. These dependent messages,8

which can easily bypass the server check, are used as a valid seed. Second, we adopt a multi-9

messages seed format to preserve the dependency of the messages when mutating the seed to10

get a valid test case, so that the test case can bypass the state check of the server to make a valid11

test. Message dependency preservation is implemented by our proposed parameter mutation and12

structural mutation methods. We implement SMG in our IoT fuzzer—SIoTFuzzer, which applies13

IoT firmwares on the latest Linux-based simulation tool FirmAE. We test 9 IoT devices including14

router and IP camera and adopt a vulnerability detection mechanism. Our evaluation results show15

that (1) SIoTFuzzer is capable of finding real-world vulnerabilities in IoT device; (2) our SMG is16

effective as it enables Boofuzz (a popular protocol fuzzer) to find command injection and XSS17

vulnerabilities; and (3) compared to FirmFuzz, SIoTFuzzer found all the vulnerabilities in our18

benchmarks, while FirmFuzz found only four—the efficiency of our tool increased by 20.57% on19

average.20

Keywords: IoT Device;Web Management Interface;Stateful Message Generation (SMG);Messages21

Dependency;Front-end Analysis;Multi-messages Seed Format;22

1. Introduction23

With the rapid development of the Internet of Things(IoT), more and more smart24

devices are widely used, such as smart homes, routers, and IP cameras. The number of25

global IoT connections continues to grow exponentially and will reach 25 billion by 2025.26

A large number of vulnerabilities in IoT devices have been disclosed in recent years. For27

example, at the 2013 Black Hat Conference, Heffner [1] demonstrated the overflow, hard-28

coded password, and command injection vulnerabilities of a variety of web cameras,29

involving D-Link, TP-Link, Linksys, and Trendnet equipment vendors. Attackers can30

use these vulnerabilities to log in without authorization and hijack the real-time video of31

the camera. Besides, real security incidents caused by security vulnerabilities are also32

emerging in endlessly. In 2019, most areas in Venezuela including the capital Caracas33

experienced a continuous power outage more than 24 hours [2]. The power outage34

made the Caracas subway inoperable and caused large-scale traffic congestion, and35

the Internet could not be used normally. Due to the long service life of IoT devices,36

there are a large number of devices in the network that have not been maintained by37

vendors. In the same year, a D-link product found an unauthenticated remote code38
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execution vulnerability [3], which affected more than 10 products of related models, but39

the product has been discontinued, D-link vendor did not release related patches, and40

the vulnerability has not been fixed. This means that once this device is exposed, it is41

very likely to become a zombie host and be used in attacks such as DDOS. As a result,42

IoT security is increasingly becoming a topic of concern to researchers. It is an important43

research field to detect the vulnerabilities of IoT devices in time.44

However, due to the huge differences in hardware and software of IoT devices from45

different vendors, it is difficult to build IoT vulnerability analysis models and establish a46

unified dynamic simulation environment. The approaches to detect IoT vulnerability is47

divided into static methods [4–6] and dynamic methods [7–9]. There are three steps in48

the workflow. Firstly, testers need to collect firmware images from public channels, such49

as online support service [10]. Secondly, these images are processed by unpacking tools,50

such as Binwalk [11]. Thirdly, static methods or dynamic methods are deployed to detect51

flaws in these unpacked files. These approaches suffer from known drawbacks. For52

static methods, different IoT devices usually use different chipsets that have customized53

features (e.g., instruction sets, memory layouts, and so on), so it is difficult to analyse54

firmware binary due to the diversity of underlying architectures. And for dynamic55

methods, on the basis of ensuring the correct operation of the device, it is complex to56

monitor device, and the monitor imposes the overhead of vulnerability analysis.57

Vendors usually use web and APP to provide users with operating interfaces. These58

interfaces can directly operate the device, and their design standards evolve according59

to the actual operation of the device. When the web and APP obtain user’s input, they60

will send operation messages to device. After receiving messages, the device does more61

further procedures according to the message content (e.g., executing a targeted program)62

and the status of device will change with this process. If there is an implementation63

flaw in the message parsing or the further procedure, a vulnerability may be exploited.64

Therefore, an IoT device that has the web interface can be treated as a blackbox, and65

feeding this box with malformed messages could trigger potential vulnerabilities of66

it. Additionally, this blackbox fuzzing does not require the knowledge of underlying67

architecture about the targeted device and there is no need to device monitor timely,68

the fuzzing could keep a high throughput. However, blackbox fuzzing will generate69

much more invalid test cases without feedback. At the same time, if the device does70

not receive the stateful message and is not in a state of accepting messages, device71

will refuse service or interrupt the connection. As a result, it is ineffective to continue72

sending mutated messages. Furthermore, some message internal parameters depend73

on the previous message, when these parameters are mutated, these messages will also74

be rejected. According to these issues, detecting vulnerabilities through the blackbox75

fuzzing is low in efficiency and effectiveness.76

Motivated by the above description, this paper leverages generation-based fuzzing77

technology to perform blackbox testing automatically. For improving the efficiency and78

effectiveness of fuzzing, we propose a stateful message generation (SMG) mechanism,79

SMG addresses two challenges including the status maintenance of device and the80

mutation of parameter dependency messages. We analyse the front-end of IoT device’s81

web interface to build initial seeds and generate test cases. Due to the difficulty of82

firmware operation monitoring, we can analyse operating interfaces to obtain prior83

knowledge. This knowledge will help us test device more comprehensively. We adopt a84

multi-messages seed format, and every seed contains a complete sequence of operations.85

Based on Boofuzz [12] (a popular protocol fuzzer) we design a black-box fuzzing tool86

called SIoTFuzzer which could detect IoT device vulnerability. By building a simulation87

environment, it is more suitable for analyzing the web management interface and88

constructing the input of IoT device. Finally, vulnerabilities can be discovered through89

device monitoring deployed in the system or built in the simulator.90

In order to validate and evaluate this blackbox fuzzing, SIoTFuzzer was designed91

and implemented for discovering vulnerabilities in IoT devices automatically. To verify92
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the improvement of our seed generation and mutation strategy, we set up a control93

group to prove that our optimization is effective. Compared with FirmFuzz [13], the94

latest device blackbox fuzzing test tool, SIoTFuzzer has a greater vulnerability discovery95

capability.96

In summary, we make the following contributions in this paper:97

1. For addressing two difficulties in detecting vulnerabilities of IoT device including98

the status maintenance of device and keeping parameter dependency between99

messages, we adopt the stateful messages generation (SMG). In addition, we adopt100

a multi-messages seed format and deploy a corresponding mutation strategy to101

guide fuzzing;102

2. We design and implement a blackbox fuzzer SIoTFuzzer for fuzzing IoT device.103

Through analysis of device web interface, we can obtain prior knowledge of web104

elements. SIoTFuzzer traverses the device web pages and gets the normal commu-105

nication messages. These messages will be used to fuzzing;106

3. We evaluated SIoTFuzzer on 9 IoT devices and 12 known vulnerabilities were found.107

At the same time, we deployed our two optimizations on Boofuzz to conduct a108

controlled experiment, and results show they improve the detection speed by109

almost 61.99%. Compared with FirmFuzz, SIoTFuzzer could indeed detect known110

vulnerabilities much faster than FirmFuzz, and vulnerability detection time is111

reduced by about 20.57% on average.112

2. Background and Motivation113

In this section, we introduce the background knowledge and motivation about114

discovering vulnerabilities via fuzzing web management interface. For fuzzing IoT115

device, we need to pay more attention to the following issues: 1. in the test preparation,116

how can we get more prior knowledge from the web page and whether the method is117

applicable to devices of different design specifications. 2. Based on issue 1, we need118

to keep the connection between the fuzzer and the device, and ensure that mutated119

messages are received by the device. These two issues will be explained in Section 2.4120

below.121

2.1. Web Interface in IoT Devices122

Vendors usually provide users with a network interface for self-management. Al-123

though there is no standard on how to implement this interface, many vendors prefer124

to use web technology because of its flexibility and simplicity [14]. The web server is125

mainly used for message transmission between the front-end and the device program126

processor called pagehandler. The main workflow is shown in Figure 1. Firstly the127

front-end gets the user’s inputs. Then the front-end packages these inputs into messages.128

Secondly after decoding the message, web server passes the parameters to pagehandler.129

Thirdly pagehandler returns the processing results which obtain the HTTP Status Code.130

Finally, front-end receive the results and display them on the page.131

Since the front-end is directly accessible, it is easier to analyse front-end than web132

server or pagehandler. The front-end is composed of HTML codes, JavaScript codes,133

CSS codes, and other static resources. All we need to analyse are HTML codes and134

JavaScript codes. Then we can get page elements and function parameters. CSS codes135

and other static resources mainly affect page layout and appearance. These codes136

are useless to message generation. For IoT devices, the front-end generates message137

sequence and transmit commands to the server. By using a variety of inputs, it may138

cause vulnerabilities in the device.139

2.2. Firmware Simulation140

The previous research mainly adopted three methods for the operation of the141

IoT devices: 1. physical objects; 2. semi-simulation(e.g., AVATAR [15]); 3. full system142

simulation (e.g., Firmadyne [8]). In the test of real devices, IoT f uzzer [16] detects whether143
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Figure 1. Workflow of web interface

the device is online by sending a heartbeat message, and every ten messages obtain a144

heartbeat message. This method is suitable for detecting obvious crashes, and the next145

time for test after crash requires device to restart, this time cost for restart is unacceptable.146

As a study by Muench et al. [17] pointed out, because the IoT devices are slower than147

desktop workstations or servers, a complete system simulation can produce the highest148

throughput. For fuzzing, higher throughput means greater efficiency. At the same time,149

it is convenient to monitor the simulation process. And when device crash, it can be150

quickly restored by the snapshot.151

Firmadyne is an automated and scalable system for performing emulation and dy-152

namic analysis of Linux-based embedded firmware. It uses a modified kernel to support153

MIPS and ARM architecture firmware for simulation. Firmadyne also has an extractor to154

extract a filesystem and kernel from downloaded firmware and a basic automated anal-155

yse to detect vulnerability. This script tests for the presence of 60 known vulnerabilities156

using exploits from Metasploit. But in nearly 2,000 firmwares tested, only 16.28% can be157

correctly simulated. Since our fuzzing test requires the network service of the device,158

a low simulation success rate cannot bring better runtime environment support. The159

subsequent improvement work, FirmAE [18] proposes arbitrated emulation to apply160

failure handling heuristics to the emulation environment. FirmAE significantly increases161

the emulation success rate (From Firmadyne’s 16.28% to 79.36%). Through FirmAE, we162

can simulate most of the collected firmware.163

2.3. Fuzzing Technology164

Fuzzing is a software testing technique that can provide random input to programs165

and has been proven to be effective in finding vulnerabilities in real programs. As166

fuzzing is gradually used more in other fields, people hope to use this method to test167

more complex objects, such as embedded devices, library functions, and file systems. For168

these targets, the first focus is obtaining a stable operating environment, and the second169

is establishing appropriate inputs for the target. In Table 1, we make a comparison with170

five IoT firmware testing tools.171

Table 1: Comparison of IoT firmware testing tools

Fuzzer
Boofuzz IoTFuzzer WMIFuzzer FirmFuzz Firm-AFL

[12] [16] [19] [13] [20]

Fuzzing Technique Blackbox Blackbox Blackbox Blackbox Greybox

Hardware Support All Real Real Emulation Emulation

Protocol Support Need Template None HTTP HTTP HTTP

Message Dependency None None None None None



Version February 9, 2021 submitted to Journal Not Specified 5 of 18

As described in Section 2.1 and 2.2, because of the difficulty of firmware analysis172

and the accessibility of front-end, most IoT tests adopt blackbox fuzzing. Boo f uzz is a173

protocol fuzzing tool based on Python language, it requires protocol templates. Writing174

protocol templates could bring a large workload, but Boo f uzz is strongly extensible for175

many kinds of scenarios.176

2.4. Motivation177

In Section 2.1, the web interface is used to accept the user’s inputs and translate178

inputs into communication messages. These messages result in the change of device179

state. When pagehandler accepts the error messages, it may cause the device to crash.180

Generating mutated device messages is a major concern of tester. Due to the different181

standards established by vendors in the protocol communication process between the182

front-end and web server, the method of injecting mutated data into web page is often183

used. However, with the application scenarios of IoT device shifting from LAN to WAN,184

vendors are improving the security of their web interfaces, such as adding some kind of185

security validation to the input field. From the code in Figure 2, lines 1-6 show the input186

validation of web page, including XSS, special character, and invalid address check.187

Every input which cannot pass validation will not be received by device. As a result,188

the method of direct injection does not apply. Therefore, we can only use proxy server189

to grab the normal messages. We need web crawlers to visit all pages of the device.190

Through front-end analysis, input simulation, and click on page elements, we obtain the191

normal device messages.192

Figure 2. Security validation of web page

In previous work, FirmFuzz [13] grabs the first message after a click operation and193

mutates all of the message’s data field. FirmFuzz will generate hundreds of test cases194

and send these requests to server at a time. As an operation always contains a message195

sequence, a single message is just a part of the operation. And some messages are used196

for device state transition. As shown in Figure 2 lines 7-10, this example shows that the197

front-end needs to ask for a sessionKey of the current session to perform parameters.198

The sessionKey is unique in every connection, and a single message without the key to199

the parameter transmission will be rejected by web server. When generating a test case,200

fuzzer need to request server for a unique key first, and then add it in message. Besides,201

this session has a timeout so that we need to request server in every test case. If we202

ignore device status and stateful messages, it will lead to two matters:203

1. During the generation phase, if a test case lacks stateful messages, it will not bypass204

the early check of the server;205

2. During the mutation phase, only mutating all data fields of the message could206

break parameter dependency between messages.207

The forced mutation strategy will lead that too many invalid messages are generated,208

and most of these mutated messages will be rejected by server. In general, for improving209

the efficiency of fuzzing, we prefer to send more test cases in a period of time. However,210

when most test cases are invalid, test cannot trigger vulnerability on the contrary.211
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Through the above problems, fuzzer need keep the connection status and mutate212

data field which has no dependency to make sure that web server receives all mutated213

message. In Table 1, we list five fuzzing tools which can test IoT device, None of them214

can deal with these two problems. In this work, we propose a stateful message generation215

(SMG) mechanism to keep the device status and connection which is described in Section216

3.217

3. Stateful Message Generation (SMG)218

In Section 3, we will introduce our pre-analysis process of the IoT device web219

management interface, which is used to generate stateful messages to solve the device220

status problem in Section 2. This process is divided into three parts: front-end analysis,221

state analysis, and seed generation.222

3.1. Front-end analysis223

The front-end of the IoT device usually adopts the single-page mode. Each sub-page224

of the page contains device information and corresponding Settings, which are filled in225

and submitted by users to IoT devices. As shown in Figure 3, this is an administration226

sub-page in the router management interface. The input elements on this page include227

the device’s new password, IP address, subnet mask, and address fields. And the click228

elements include three buttons.

Figure 3. The administration setting of a router
229

The elements that affect page changes mainly include link and button elements.230

The link element only needs to be clicked to trigger the server response. The button231

element may need the corresponding form content to trigger. The current analysis tools232

for device webpages mainly crawl the links on the page and then enter the page under233

the link for further operation. However, the web page still has many pop-up windows234

or implicit links that need to trigger through click, which cannot be obtained by simple235

page analysis. At this point, our work improved on the page crawler. The link elements236

are classified as click elements. By identifying all click elements, all page jump actions237

are triggered by clicking instead of jumping through links. Before the page jump occurs,238

it is necessary to identify all input elements and click elements on the page and fill the239

input elements. For every page, we maintain a clicked queue to make sure trigger all240

operations.241

The front-end analysis is divided into three steps:242



Version February 9, 2021 submitted to Journal Not Specified 7 of 18

Figure 4. The code of the administration setting web page

1. Determine whether to enter a new page that has never visited; We need to identify243

the current page elements and create the lists of input and click elements. These244

element lists will not be released until the end of analysis.245

2. Fill in the input elements and create a dictionary library to match the element names246

with certain rules. The code in 4 corresponds to the device page in Figure 3, where247

in lines 1-20 are the input elements on the page. Our page elements filling uses248

certain rules to match the type of data, including address, character, and number,249

select data from the dictionary to fill it. The element oldPwd in lines 3-6 is not a250

form element, so it will not appear in the generated message parameters; if the251

server lacks verification of such parameters when they are added to the message,252

the server may crash. We call this type of input element non-form input, and253

we need to record these id and type information to add these parameters to the254

mutation.255

3. Click on the link or button while recording the page status. Each click may cause a256

change to the page. At the same time, we need to use an agent to record the data257

sequence corresponding to this change258

3.2. State Analysis259

In order to keep the connection between the server and the fuzz process, it is260

necessary to maintain the state of the device to receive the mutated message. As shown261

in Figure 5, the states mainly include authorize, wait, and action. when the web server262

receives parameters, the device needs to be authorized, and then the front-end can send263

messages until timeout.264

In state analysis, firstly, we should make the device status change from waiting to an265

authorization. we need to capture the authorization messages and replay these message266

to device. Secondly, the web server sends the operation messages. A page operation may267

include the interaction of multiple messages. The traditional fuzzing tool is used a single268

message to construct a test case. This method cannot handle the vulnerabilities that269

may be caused by the complex message process. Fuzzer will generate a large number270

of invalid test cases that are rejected by the server. To solve this problem, each time we271

analyse the device state, the operation sends a message sequence that corresponds to a272

page operation. The message sequence from the wait to the end of the operation is what273
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we need to obtain. After the input elements in the subpage are filled, when each clicked274

element is clicked, the message sequence starts to be obtained until the operation finish.275

Figure 5. State transition of the device.

3.3. Seed generation276

Through state analysis, we get the sequence of messages corresponding to an277

operation, filter the useful messages, and reconstruct the seeds. First, we need to filter278

the messages, only keep the GET and POST requests in the HTTP request, and remove279

the GET request for web resources, in Figure 6b is the specific format of the seed message;280

second, we need to combine the filtered messages to form a seed. We divide the messages281

that make up the seed into four categories:282

1. Authorization message: it is used to authorize the device so that subsequent283

messages can be accepted by the web server;284

2. Independent reference message: it is a single message used to transmit parameters285

to the server;286

3. Multi-step reference message: according to the device rules, the client may need287

to initiate a verification request before transmitting parameters to the server, so a288

multi-step reference message consists of multiple messages containing verification289

information;290

4. Payload message: in our research, the trigger link of some vulnerabilities is inacces-291

sible, so we collected some payload messages about vulnerabilities in IoT devices292

to trigger certain vulnerabilities that cannot be accessed from the page. Note that293

the payload message is mainly used for mutation and does not constitute the initial294

seed.295

Figure 6. (a)The structure of the multi-messages seed.(b)The format of messages consisting seed.

As shown in Figure 6a, for each initial seed, it can be divided into two parts, head,296

and body. The head must be the initial message, and the body can contain several297
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Figure 7. Framework of SIoTFuzzer

independent messages and multi-step messages. Then put the generated seed into the298

seed pool and wait for seeds to be selected and mutated.299

4. Framework of SIoTFuzzer300

The Framework of SIoTFuzzer is described from two main aspects in Section 4. As301

shown in Figure 7, after simulating the IoT device, SIoTFuzzer selects a seed in order302

from the seed queue which has been generated in Section 3. Next, SIoTFuzzer mutates303

seed with parameter mutation and structural mutation. Then we generate test cases and304

perform vulnerability testing on the server. At the same time, SIoTFuzzer monitors the305

status of the device. We will describe the process in detail in Section 4.1 and 4.2.306

4.1. Mutation Strategy307

According to the seed format used in Section 3, There are multiple messages in a308

seed, and it is unknown which message with mutated content can trigger a vulnerability.309

As shown in Algorithm 1, the mutation strategy is proposed to perform the fuzzing.310

There are two phases including determined phase and random phase. The determined311

phase is divided into two stages: parameter mutation and structural mutation.312

4.1.1. Parameter Mutation313

Parameter mutation is used to trigger memory-related vulnerabilities and command314

injection vulnerabilities. To ensure that the message sequence is completely accepted and315

data is transmitted to the device server, we mainly mutate the message parameter. For316

protocol messages, a parameter usually contains nodes and values. Therefore, Parameter317

mutation includes parameter node mutations and value mutations. Before the mutation318

proceeds, the parameters in the message need to be parsed with a parameter dictionary.319

In particular, when multi-step messages are mutated, we mark the verification message320

and verification field and do not mutate this part. We adopt node mutation first and321

then value mutation.322

For node mutation, we randomly select a parameter position, and perform the323

following operations on this parameter node:324

• N1: delete this node;325

• N2: repeat this node. The purpose of this step is to test whether the server will326

generate an error if a parameter is assigned multiple times in a statement;327
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• N3: select one parameter from the non-form parameter library and insert it at this328

position. If the server lacks verification of the non-form parameter and an illegal329

value is passed in, the device will crash.330

For value mutation, we randomly select a parameter position, and perform the331

following operations on the value of this parameter node:332

• V1: extend the data content. This step includes two methods. The first is to333

increase the data length for the data content in the form of characters. This step334

generally uses multiple copies of the original string or directly fills a character to335

the maximum length to trigger the buffer overflow vulnerability; Second is to add336

execution commands after the data, including ping, reboot, or execute a script.337

Before the device simulation runs, we will execute the script into its file system.338

• V2: clear the data content. If the web server lacks non-empty verification, this339

operation will trigger related vulnerabilities;340

• V3: replace digital data in the boundary integer. This operation might trigger341

possible data verification errors. The HTTP protocol is a text-based protocol, so we342

use regular matching to determine whether the parameter may be a digital type.343

The digital data will be replaced with classic boundary integer numbers: 2i, 2i − 1,344

and 2i + 1, where 0 6 i 6 32.345

• V4: change the content type. This operation might trigger vulnerabilities about346

assumptions on the data type. The content type of the replacement value has347

triggered type assumptions. For example, replace the type of digital data with the348

data in the form of ASCII code. It may cause a crash when the data is processed as349

a number type.350

4.1.2. Structural Mutation351

Structural mutation is to mutate the structure of multi-messages seed. For the deter-352

mined phase, we only randomly select a body massage to ensure that the authorization353

messages remain unchanged. The following four mutation strategies are used:354

• S1: exchange the message adjacent to this position;355

• S2: repeat the message at this position;356

• S3: delete the message at this position;357

• S4: add the payload message after the position.358

Table 2: The examples of the mutation algorithms

# Operation Before After

Node

Mutation

N1 P0=AAA&P1=0 P0 = AAA

N2 P0=AAA&P1=0 P0=AAA&P1=0&P1=0

N3 P0=AAA&P1=0 P0=AAA&P1=0&P3=1

Value

Mutation

V1 P0=AAA&P1=0 P0=AAAAAA./test.py&P1=0

V2 P0=AAA&P1=0 P0=&P1=0

V3 P0=AAA&P1=0 P0=AAA&P1=2i

V4 P0=AAA&P1=0 P0=AAA&P1=AAA

Structural

Mutation

S1 M1;M2;M3; M1;M3;M2

S2 M1;M2;M3; M1;M2;M3;M3;

S3 M1;M2;M3; M1;M2;

S4 M1;M2;M3; M1;M2;M3;Payload;



Version February 9, 2021 submitted to Journal Not Specified 11 of 18

Table 2 summarizes the seed mutation algorithms supported by determined phase359

with examples. determined phase assigns each algorithm a specific weight at runtime.360

We empirically set structural mutations with low priority, as the wrong structures361

generally lead to rejection by the server.362

In random phase, from all the mutation strategies described above, we randomly363

select multiple mutations, mutate the seeds in the order of selection, at the same time364

add the initial message to the mutation sequence.365

Algorithm 1 SeedMutation(Seed, N-Mutation, V-Mutation, S-Mutation)

Input: the set of seed messages, Seed;
the set of node mutation method, N-Mutation{N1, N2, N3};
the set of value mutation method, V-Mutation{V1, V2, V3, V4};
the set of structural mutation method, S-Mutation{S1, S2, S3, S4};
//determined phase
seedi = random(Seed) // randomly select a seed
split Seedi to messages set {M1,M2,...,Mn}
for each Mi != M1 and Mi ε M do

P = message-parameter(Mi) // get the set of parameters from message
Pi = random(P) // randomly select a parameter
for each Mutation ε {N-Mutation, V-Mutation} do

Mui = random(Mutation) // randomly select a mutation method
Pi = mutation(Mui, Pi) //mutate the message parameters

end for
Si = random(S-Mutation)
seedi = mutation(Si, seedi) //mutate the structural of seed

end for
Testcase = Script-generated(Seedi)
result = sending-detection(Testcase)
if interesting(result) then

alert(result)
end if
//random phase
for Mi ε M do

operation = random(N-Mutation, V-Mutation, S-Mutation)
Testcase = mutation(operation, Seedi)

end for
Testcase = Script-generated(Seedi)
result = sending-detection(Testcase)
if interesting(result) then

alert(result)
end if

4.2. Vulnerability Detection366

In vulnerability detection, we can monitor the firmware from two aspects: 1. The367

response from the server. 2. The status of the firmware simulation. For memory-related368

vulnerability detection, the detection mechanism based on server feedback is faster369

than the status monitor. By the HTTP status code in response, we can roughly judge370

whether the device has obvious errors. When an exception occurs to the device, the371

server’s response may include: 1. normal response; 2. error response; 3. no response.372

For error response, if the crash causes the connection interrupted, the user will not373

access the server. At the same time, the simulation will also make obvious mistakes. For374

normal response and no response, we can further monitor the process status through375

instrumentation.376

For command injection, it is more difficult to be monitored by command injection377

attacks for real devices. For firmware simulation, the specified executable file is placed378
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in the firmware file system before the simulation. Run the command of the file and379

check whether the command injection is successful or not by checking whether the file is380

executed.381

5. Implementation and Evaluation382

We present the prototype implementation of SIoTFuzzer in Section 5.1 and the383

evaluation in Section 5.2.384

5.1. Implementation of SIoTFuzzer385

SIoTFuzzer was implemented with around 5,000 Python lines of code in total. Also,386

several open-source projects (e.g., Chrome, Boo f uzz [12], Mitmproxy [21], Pyppeteer [22])387

are integrated into this fuzzer to avoid reinventing the wheel.388

In the seed generation phase, the front-end analysis was built based on Chrome and389

its Pyppeteer driver. Python code was written to use the Pyppeteer driver to control the390

Chrome behavior, such as opening a URL, inputting data, and clicking a button. The391

mitmproxy project, an HTTP proxy written in Python code, was extended to filter useless392

messages and generate initial seeds.393

In the fuzzing phase, Python code was written to schedule the fuzzing, convert394

the seed to the Boo f uzz test script and we modified the mutation code of Boo f uzz. The395

response message is analysed to get parameter dependency and whether the device396

crash.397

5.2. Evaluation of SIoTFuzzer398

5.2.1. Testing Devices399

We crawled firmware images through the official websites of various vendors for400

simulation, and crawled more than 30 device images, including 9 devices that have401

web interfaces and can be successfully simulated. The detailed specifications of these402

images and whether they can be successfully simulated by Firmadyne and FirmAE are403

described in Table 3.404

Table 3: Summary of IoT devices with firmware simulation

Type Vender Device Firmadyne FirmAE

Router

D-Link DSL-3782 Yes Yes

D-Link DIR-822 Yes Yes

D-Link DIR-823G Yes Yes

D-Link DIR-865L Yes Yes

D-Link DAP-2695 Yes Yes

TP-Link WR940N Yes Yes

Netgear WNAP320 No Yes

Trendnet TEW-652BRP No Yes

IP Camera Trendnet TV-IP110WN No Yes

5.2.2. Testing Environment405

The SIoTFuzzer and the other two fuzzers run in separate virtual machines that406

host Ubuntu 18.04 with an Intel Core i9 quad-core 3.6 GHz CPU and 8G RAM. Each407

virtual machine builds a FirmAE simulation platform. For our seed generator, it is only408

deployed on our tool, and the generated seed file can be directly transferred to the tool409

on other virtual machines.410

We deploy FirmFuzz and Boo f uzz respectively on the other two virtual machines.411

For FirmFuzz, we do not make any changes and maintain its normal operation. For412
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Boo f uzz, we extend our function of seed generation and monitoring strategy on it to413

create two versions: Boo f uzzS and Boo f uzzM.414

5.2.3. Research Questions415

Using the previous experiment setup, we would like to answer the following ques-416

tions:417

• Q1: how effective is SIoTFuzzer in finding real vulnerabilities in IoT firmware?418

• Q2: how about the suitability and effectiveness of our seed generation function and419

fuzzing scheduling?420

• Q3: can SIoTFuzzer outperform the IoT fuzzing tool FirmFuzz in detecting vulnera-421

bilities?422

Effectiveness of Vulnerability Detection (Q1): Table ?? lists the vulnerabilities423

discovered by SIoTFuzzer. For each device under test, SIoTFuzzer uses SMG to automat-424

ically generate initial seeds within 1 hour, and next start fuzzing within 24 hours. Finally,425

it found 12 vulnerabilities: 7 buffer overflows, 3 command injections, and 2 XSSs. These426

results show that SIoTFuzzer can automatically detect device vulnerabilities based on427

our SMG mechanism and decive monitor.428

Table 4: List of discovered known vulnerabilities

Vulnerability Device Exploit ID

Buffer Overflow

D-Link DSL-3782 CVE-2019-7298

D-Link DIR-822 CVE-2019-6258

Trendnet TEW-652BRP CVE-2019-11400

TP-Link WR940N CVE-2017-13772

Netgear WNAP320 CVE-2016-1555

D-Link DAP-2695 CVE-2016-1558

Trendnet TV-IP110WN CVE-2018-19240

Command Injection

Trendnet TEW-652BRP CVE-2019-11399

D-Link DSL-3782 CVE-2018-17990

D-Link DIR-823G CVE-2019-7297

XSS
D-Link DSL-3782 CVE-2018-17989

D-Link DIR-865L CVE-2018-6529

Effectiveness of the Optimizations (Q2): In order to evaluate the effectiveness of429

our optimizations, we set up three control groups. The specific settings are as follows:430

for the original Boo f uzz, we use the original messages which were analysed through the431

front-end as the initial seed to test the device; for Boo f uzzS, add the SMG to test, and for432

Boo f uzzM, add the mutation strategy. The experiment time is 24 hours. The results are433

shown in Table 5.434

We performed a further manual analysis and found the following:435

(1) for comparing Boo f uzz with Boo f uzzS, when detecting buffer overflow vulnerabili-436

ties, Boo f uzz is able to detect independently, but it is unable to cause crashes which are437

triggered by dependency messages.438

(2) for comparing Boo f uzzS with Boo f uzzM, through adding the mutation strategies, we439

can cause command injection and XSS. But without device monitor, command injection440

cannot be detected. These results show that our optimization can help us to find more441
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Table 5: Control experiment of fuzzing tools

Exploit ID Vulnerability Boofuzz BoofuzzS BoofuzzM SIoTFuzzer

CVE-2019-7298 Buffer overflow N/A 1h14m 1h05m 1h19m

CVE-2019-6258 Buffer overflow N/A 1h35m 1h26m 1h39m

CVE-2019-11400 Buffer overflow 3h47m 1h26m 1h23m 1h42m

CVE-2017-13772 Buffer overflow 3h34m 1h14m 56m 1h01m

CVE-2016-1555 Buffer overflow 1h14m 43m 36m 39m

CVE-2016-1558 Buffer overflow 1h31m 45m 37m 41m

CVE-2018-19240 Buffer overflow N/A 1h02m 49m 52m

CVE-2019-11399 Command injection N/A N/A N/A 2h45m

CVE-2018-17990 Command injection N/A N/A N/A 2h21m

CVE-2019-7297 Command injection N/A N/A N/A 3h01m

CVE-2018-17989 XSS N/A N/A 2h40m 3h11m

CVE-2018-6529 XSS N/A N/A 2h33m 3h05m
1 Boo f uzzS: Boo f uzz with comprehensive seed;
2 Boo f uzzM : Boo f uzzS with mutation strategies;
3 SIoTFuzzer: Boo f uzzM with device monitor;

vulnerabilities. And compared Boo f uzzM with Boo f uzz, The stateful message and mu-442

tation strategy could improve the detection speed by 61.99%,443

(3) SIoTFuzzer takes more time than Boo f uzzM to find vulnerabilities. The discovery444

time was increased by about 11.42%. Due to our device monitor, for every test case, we445

need to read the simulation log and find the possible vulnerability. These operations will446

cause the time consumption.447

Compare with the FirmFuzz (Q3): In order to evaluate the efficiency and the448

effectiveness of SIoTFuzzer, we compare it with FirmFuzz. Every tool runs within 24449

hours.450

Table 6 lists the efficiency of vulnerability detection by FirmFuzz and SIoTFuzzer.451

We performed a further manual analysis and found the following:452

(1) FirmFuzz can only find four vulnerabilities, and the most common vulnerability453

found is buffer overflow.454

(2) In the total execution time, SIoTFuzzer is 17.64% to 23.53% faster than FirmFuzz.455

These results indicate that our work can find more vulnerability and detection time is456

reduced by about 20.57% on average.457

6. Discussion and Limitations458

Although SIoTFuzzer can discover vulnerabilities in IoT devices efficiently, there459

are still some avenues for future improvements.460

6.1. Scope of Test Targeted461

There are limitations in not only the firmware simulation but also the testing pro-462

tocols. Although FirmAE brings great improvement in simulation success rate, there463

are still lots of devices cannot be simulated for the different architecture, filesystems or464

other reason. To solve this problem, semi-simulation is promising. SIoTFuzzer or other465

IoT fuzzing tools mainly focus on HTTP protocol, but some protocols like FTP, SSH,466

or Telnet lack the fuzzing strategies. Combining with machine learning and protocol467

identification may be the solution to this issue.468
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Table 6: Statistics on vulnerability detection

Exploit ID FirmFuzz SIoTFuzzer improvement

CVE-2019-7298 N/A 1h19m N/A

CVE-2019-6258 N/A 1h39m N/A

CVE-2019-11400 N/A 1h42m N/A

CVE-2017-13772 1h15m 1h01m 18.67%

CVE-2016-1555 51m 39m 23.53%

CVE-2016-1558 53m 41m 22.64%

CVE-2018-19240 1h03m 52m 17.64%

CVE-2019-11399 N/A 2h45m N/A

CVE-2018-17990 N/A 2h21m N/A

CVE-2019-7297 N/A 3h01m N/A

CVE-2018-17989 N/A 3h11m N/A

CVE-2018-6529 N/A 3h05m N/A

6.2. Fuzzing Strategy Optimization469

We generation more comprehensive seeds to obtain better test results, but we use a470

random method for seed selection in each test case. The probability of selecting seeds is471

the same without distinguishing the priority of the seeds. We will follow up using the472

coverage guide method. Through the analysis of the simulated firmware process, the473

priority of the seed will be evaluated before the fuzzing test. After the pre-run, the seed474

which can call more processing functions will be selected first.475

6.3. Timely Firmware Monitoring476

After the web server transmits the parameters, it has taken a long time for the device477

to process the parameters. While the device is processing wrong, the fuzzer has sent478

some new messages during this time, so the message that triggers the vulnerability needs479

to be manually located. The testers need to determine the cause of the vulnerability.480

In order to better locate the error message in the follow-up, a fine-grained monitoring481

method will be implemented through firmware instrumentation, which makes it easier482

to find the vulnerability.483

7. Related Work484

With the increasing number of IoT security issues, fuzzing techniques are proposed485

to find the IoT devices vulnerabilities in an automatic manner, including mutation-based486

fuzzing and generation-based fuzzing.487

7.1. Mutation-based fuzzing488

Since most network-enabled devices will communicate with an external entity, some489

works are presented to fuzz these communication protocols for vulnerability discovery.490

RPFuzzer [23] is a blackbox fuzzing framework to detect vulnerabilities in Cisco routers,491

and it used a predefined data model to generate seeds for mutation-based fuzzing. The492

main challenge is that it requires a security expert to write the data model, so it cannot493

be leveraged to test other devices automatically. Wang et al.[19] presented WMIFuzzer,494

a mutation-based blackbox fuzzer targeting the web management interface in COTS IoT495

devices; a weighted message parse tree (WMPT) was proposed to guide the mutation496
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to generate mostly structure-valid messages. However, WMIFuzzer does not have the497

support for local monitoring. And fuzzing for test real device, WMIFuzzer do not have498

a high throughput because the connection of the test is often interrupted. However,499

these works impose overhead on the device’s startup and rebooting for each fuzzing500

session. In order to improve this problem, through the firmware simulation, rebooting501

device from snapshot could reduce overhead. Zheng et al.[20] presented Firm-AFL, the502

mutation-based greybox fuzzing platform for IoT firmware which aims to minimize503

each fuzzing iteration overhead so that the fuzzer can test more test cases in the same504

unit of time. It proposed a novel technique, augmented process emulation to achieve505

high throughput fuzzing by running the target program in a user-mode emulator and506

switch to a full-system emulator when the target program invokes a system call that507

has specific hardware dependencies. This work resolved the performance bottlenecks.508

However, Firm-AFL focuses on the coverage of a single program and does not care509

about the communication process, so the increase in the coverage of a single program is510

difficult to trigger inter-program vulnerability.511

7.2. Generation-based fuzzing512

Chen et al. [16] presented IoTFuzzer that performs a protocol-guarded fuzzing513

on COTS devices; its key idea is that many IoT devices can be controlled through514

their official mobile apps. So, they firstly adopted a taint-based approach to track the515

atomic data that are used to construct the network message; then, they mutated these516

atomic data dynamically to reuse the original code of message building. However,517

not all IoT devices have an official control app, and IoTFuzzer can just detect memory518

corruption. After that, Costin et al. [14] presented an automated framework to discover519

vulnerabilities in web interfaces of embedded devices; it works by integrating Qemu520

to run the web service and testing the web service via existing web penetration tools.521

Although it used some heuristic techniques to run chroot and init to launch the web522

service, it may fail because of the side effects of forced emulation, diversity of web523

server environment, and limitations of Qemu. Based on this automated framework,524

Prashast et al. [13] presented FirmFuzz, a fuzz testing of embedded firmware images.525

Closest to our work, FirmFuzz detects IoT device vulnerabilities via the web interface.526

It is a generational fuzzer for syntactically legal input generation that leverages static527

analysis to aid fuzzing of the emulated firmware images while monitoring the firmware528

runtime. FirmFuzz mutates communication messages by collecting payloads that can529

trigger vulnerabilities. However, it does not care about mutation strategy, and hence530

the chance of detecting a vulnerability is relatively low. Compared with above blackbox531

fuzzing works, SIoTFuzzer pays more attention on communication process. Through532

the front-end analysis and state analysis, SIoTFuzzer generates comprehensive seed533

messages targeting different web interfaces. And more pertinency mutation strategies534

can trigger more vulnerabilities.535

8. Conclusion536

We present SIoTFuzzer, an automated framework to fuzz the web interface of IoT537

device based on whole-system emulation. We adopt the function of stateful message gen-538

eration (SMG). These messages consisting seed could basically cover all page operations539

and make the device normal state transition. Then we design a multi-messages seed540

format to improve the probability of being received mutated messages by devices. At541

the same time, Our mutation strategy could contain the parameter dependency between542

messages.543

We used SIoTFuzzer to test for three types of vulnerabilities in the firmware images544

that we studied: buffer overflow, command injection, and XSS. To evaluate the effec-545

tiveness and the efficiency of the SIoTFuzzer, we test 9 IoT devices and finally found546

12 vulnerabilities. Through control experiments, we proved our optimizations are effi-547

cient. The stateful message and mutation strategy could improve the detection speed by548
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61.99%, and our device monitor could issue the error warning in time. Compared with549

Firmfuzz, the results showed that SIoTFuzzer could indeed detect known vulnerabilities550

much faster than FirmFuzz, and vulnerability detection time is reduced by about 20.57%551

on average.552
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Abbreviations563

The following abbreviations are used in this manuscript:564

565

IoT Internet of things
SMG Stateful Message Generation
DDoS Distributed Denial-of-service
HTML Hyper Text Markup Language
CSS Cascading Style Sheets
CVE Common vulnerabilities and exposures
XSS Cross-site Scripting
HTTP HyperText Transfer Protocol
FTP File Transfer Protocol
SSH Secure Shell
COTS Commercial Off-the-shelf
CPU Central Processing Unit
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