
IE
EE P

ro
of

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 1

From Release to Rebirth: Exploiting Thanos
Objects in Linux Kernel

Danjun Liu , Pengfei Wang , Xu Zhou , Wei Xie, Gen Zhang, Zhenhao Luo , Tai Yue , and Baosheng Wang

Abstract— Vulnerability fixing is time-consuming, hence, not1

all of the discovered vulnerabilities can be fixed timely. In reality,2

developers prioritize vulnerability fixing based on exploitability.3

Large numbers of vulnerabilities are delayed to patch or even4

ignored as they are regarded as “unexploitable” or underesti-5

mated owing to the difficulty in exploiting the weak primitives.6

However, exploits may have been in the wild. In this paper,7

to exploit the weak primitives that traditional approaches fail8

to exploit, we propose a versatile exploitation strategy that can9

transform weak exploit primitives into strong exploit primitives.10

Based on a special object in the kernel named Thanos object,11

our approach can exploit a UAF vulnerability that does not have12

function pointer dereference and an OOB write vulnerability that13

has limited write length and value. Our approach overcomes the14

shortage that traditional exploitation strategies heavily rely on the15

capability of the vulnerability. To facilitate using Thanos objects,16

we devise a tool named TAODE to automatically search for eligible17

Thanos objects from the kernel. Then, it evaluates the usability of18

the identified Thanos objects by the complexity of the constraints.19

Finally, it pairs vulnerabilities with eligible Thanos objects.20

We have evaluated our approach with real-world kernels. TAODE21

successfully identified numerous Thanos objects from Linux.22

Using the identified Thanos objects, we proved the feasibility of23

our approach with 20 real-world vulnerabilities, most of which24

traditional techniques failed to exploit. Through the experiments,25

we find that in addition to exploiting weak primitives, our26

approach can sometimes bypass the kernel SMAP mechanism27

(CVE-2016-10150, CVE-2016-0728), better utilize the leaked heap28

pointer address (CVE-2022-25636), and even theoretically break29

certain vulnerability patches (e.g., double-free).30

Index Terms— Vulnerability exploitation, transfer weak31

primitives, kernel security.32

I. INTRODUCTION33

SOFTWARE vulnerabilities cause severe consequences in34

the real world [1], [33]. Among them, kernel vulnera-35

bilities have the biggest impact, which can cause privilege36

escalation, information leakage, etc. For example, Linux kernel37

has more than twenty million lines of code, and its compli-38

cated mechanisms and internal functions make vulnerabilities39

emerge consecutively. During the past 5 years, 1,306 vulner- 40

Manuscript received 12 August 2022; revised 25 October 2022;
accepted 22 November 2022. This work was supported in part by the National
University of Defense Technology Research Project under Grant ZK20-17 and
Grant ZK20-09, in part by the National Natural Science Foundation China
under Grant 62272472 and Grant 61902412, and in part by the Hunan Province
Natural Science Foundation under Grant 2021JJ40692. The associate editor
coordinating the review of this manuscript and approving it for publication

w

C

a

h

s

an

P

g

ro

sh

f.

a

G

4

e

1

o

0

r

0

g

7

e

3

L

,

o

C

u

h

k

i

a

n

s

a

.

(

(

e

C

-m

or

a

r

i

e

l

s

:

p

p

o

f

n

w

d

a

in

n

g

g@

au

n

t

u

h

d

o

t

r

.e

:

d

P

u

e

.c

n

n

g

)

f

.

ei Wang.)

 The authors are with the National University of Defense Technology,

Digital Object Identifier 10.1109/TIFS.2022.3226906

abilities were discovered in Linux kernel [9]. 41

Since fixing vulnerabilities is time-consuming, not all of the 42

discovered vulnerabilities can be fixed timely. For example, the 43

continuous fuzz testing platform szbot [11] has exposed more 44

than 4,000 vulnerabilities in recent years, but nearly 1,000 45

vulnerabilities have not been fixed yet (up to Jan. 2022). As has 46

been investigated in [42], it takes an average of 51 days to fix a 47

bug (over 3,396 fixed bugs), whereas it takes less than 0.4 day 48

for syzbot to report a new bug. Hence, the Linux community 49

prioritizes bug fixing based on exploitability. Vulnerabilities 50

that are regarded as unexploitable in practice would be delayed 51

to patch or even ignored. According to CVEDetails’ [10] 52

statistics, only 9.5% of vulnerabilities in the last 20 years have 53

been proved to be exploitable. For the rest, there is a huge time 54

span from vulnerabilities being found to being fixed. However, 55

exploits may have already been in the wild. 56

Security researchers determine a vulnerability’s exploitabil- 57

ity based on the exploit primitives. Exploitable vulnerabilities 58

have strong primitives that can read or write arbitrary bytes to 59

the desired location, while unexploitable vulnerabilities only 60

have weak primitives that can only read or write limited 61

bytes of data to unimportant data structures. This greatly 62

increases the difficulty of writing payload into the kernel and 63

hijacking kernel control-flow. However, such “unexploitable” 64

vulnerabilities can become exploitable in the real-world. Under 65

certain circumstances, it is possible to transform weak exploit 66

primitives into strong exploit primitives. 67

In 2021, Nguyen [24] successfully exploited such a weak 68

heap out-of-bounds write vulnerability (CVE-2021-22555) 69

that can only write two NULL bytes to the adjacent object. 70

Using a special vulnerable object (i.e., msg_msg) in the 71

kernel, they can transform a weak OOB write into a strong 72

exploit primitive and achieve privilege escalation. However, 73

their approach is not universal. First, it is pretty difficult for 74

people to find such a usable vulnerable object to realize a 75

workable exploit. Specifically, msg_msg is only usable in 76

the Linux kernel from v5.9 to v5.14, while in other kernel 77

versions, msg_msg is not usable as it is put into kmalloc-cg-* 78

cache which is isolated from common vulnerable objects. 79

Second, exploiting such vulnerable objects is complicated. For 80

example, different vulnerabilities may overwrite at different 81

offsets and different caches, which needs different vulnerable 82

objects to match. Third, other vulnerability types, such as UAF 83

should also be included. Thus, to find more such vulnerable 84

objects and use them properly, an universal approach that can 85

identify them automatically, evaluate their usability, and pair 86

them with suitable vulnerabilities, is in demand. 87

1556-6021 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5375-7598
https://orcid.org/0000-0003-3408-4153
https://orcid.org/0000-0002-0075-5003
https://orcid.org/0000-0001-7818-4987
https://orcid.org/0000-0002-7276-8735

IE
EE P

ro
of

2 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

In this paper, we name the above mentioned vulnerable88

object as the Thanos object and propose an versatile strat-89

egy to transform weak exploit primitives into strong exploit90

primitives based on Thanos objects. Using the heap pointer91

in the Thanos object, we can control the release of the92

memory that the heap pointer points to. We leverage the heap-93

related use-after-free (UAF) vulnerability and the slab out-94

of-bounds (OOB) write vulnerability as two typical scenarios95

to illustrate the exploitation of Thanos objects. For a common96

unexploitable vulnerability with weak primitives, it can only97

write limited bytes of data at a fixed offset without other98

harmful behaviors. However, using a Thanos object that has99

a heap pointer at exactly the same offset, we can trigger the100

UAF write or the OOB write to make the heap pointer point101

to another heap chunk (which already has a pointer pointing102

to it). In this way, we create a vulnerable overlapped situation103

where two pointers point to the same chunk. Then, we con-104

struct two release paths to free the overlapped chunk twice and105

use a victim object and a spray object to take up the chunk,106

respectively. Using the traditional heap spraying technique [5],107

the spray object can write full length and arbitrary values108

to craft the victim object, leading to control-flow hijacking109

and privilege escalation. This transformation can break the110

limitation of write length and write value. To sum up, by using111

Thanos object to release an overlapped memory twice, we can112

maximize our write capacity and make rebirth come true.113

However, to implement the above-mentioned approach,114

we have to overcome three challenges. First, is to automati-115

cally identify Thanos objects from the Linux kernel. Differ-116

ent vulnerabilities may write at different offsets. For example,117

some OOBs write the first few bytes of the adjacent object,118

while some UAFs write the middle bytes of the freed object.119

Thus, we should search for as many Thanos objects as possible120

to satisfy the needs of different vulnerabilities. Second, is to121

evaluate the usability of the identified Thanos objects.122

Different Thanos objects have different heap pointers, and the123

allocation paths, as well as the release paths, are also different.124

The higher complexity in exploiting a Thanos object, the lower125

usability it has. Third, is to pair vulnerabilities with suitable126

Thanos objects. The heap pointer of the Thanos object should127

be able to be overwritten by the vulnerability capability and128

we should pair the vulnerability with a high usability Thanos129

object based on their structure and characteristics.130

To overcome the above challenges, in this work, we propose131

a general approach to automatically identify Thanos objects132

and leverage them to transform weak exploit primitives into133

strong exploit primitives. We develop a tool named TAODE,134

standing for ThAnos Object DiscovEry, based on LLVM static135

analysis. First, it applies backward inter-procedural control-136

flow analysis and data-flow analysis to identify all Thanos137

objects in the kernel. Then, it collects relevant constraints to138

evaluate the usability of the identified Thanos objects. Finally,139

it pairs appropriate Thanos objects to corresponding kernel140

vulnerabilities. Using this tool, we show that Thanos objects141

are pervasive in the kernel (Linux, FreeBSD, XNU) and useful142

in real-world vulnerability exploitation.143

In summary, this paper makes the following contributions.144

• We present a versatile exploitation strategy using Thanos145

objects to transform weak exploit primitives into strong146

exploit primitives. Our approach can exploit a UAF147

vulnerability that does not have function pointer deref- 148

erence and an OOB write vulnerability that has limited 149

write length and value. Besides, our approach can some- 150

times bypass the kernel SMAP scheme by controlling 151

more kernel space to place ROP chain, better utilize the 152

leaked information (e.g., ordinary heap pointer), and even 153

theoretically break certain vulnerability patches (e.g., 154

double-free). 155

• We implement a tool named TAODE based on LLVM 156

static analysis. It can automatically search for available 157

Thanos objects in the kernel and pair vulnerabilities with 158

suitable Thanos objects according to the usability. 159

• We demonstrate the ability of TAODE in searching Thanos 160

objects from real kernels (Linux, FreeBSD, XNU). 161

We also validate our exploitation strategy using 20 real- 162

world vulnerabilities with the identified Thanos objects. 163

II. BACKGROUND 164

A. Kernel Memory Management 165

Linux kernel uses buddy system to manage physical mem- 166

ory pages. Buddy system allocates memory in units of page. 167

However, most kernel structures need memory of less than one 168

page. The slab allocator further divides a page into smaller 169

objects, whose sizes are in units of bytes, like 8, 16, 32, etc. 170

Basically, each slab cache is a linked list of slabs and each 171

slab is an array of objects with similar sizes. Objects in the 172

same slab cache are likely to be located in adjacent spaces. 173

The heap spraying technique is exactly based on this principle. 174

Objects in different slab caches are isolated in a sense, which 175

means by leaking one slab’s starting address, we cannot infer 176

another different slab’s starting address. When a vulnerable 177

object locates in a slab cache that has less important data to 178

corrupt, we can use the Thanos object to transform it into 179

another cache that has abundant useful objects. 180

B. Weak Vs. Strong Exploit Primitive 181

Exploit primitives are machine states that violate security 182

policies at various levels and indicate an attacker could get 183

extra capabilities beyond the normal functionality provided 184

by the original program [37], which is the foundation of 185

generating an effective exploit. Exploit primitive includes read 186

and write exploit primitive. Read primitive is used to leak 187

key information, such as kernel function address and other 188

useful pointers, and write primitive is used to hijack kernel 189

control-flow or modify kernel credential. 190

1) Read Exploit Primitive: contains two characteristics. 191

First, is the number of bytes it can read. If it can only read less 192

than 4 bytes for one time or for several times in total, we regard 193

it as a weak read primitive. As we know, at least 4 bytes of data 194

are needed to bypass important mitigation in x86-64 kernel, 195

like KASLR [23], for the higher 4 bytes of kernel address 196

are fixed. Otherwise, if it can read arbitrary bytes of data as 197

we control, we treat it as a strong read primitive. Second, is 198

the significance of the leaked data. If the leaked data makes 199

no sense (not secret information, like a cryptographic key) or 200

does not contribute to mitigation bypassing or data crafting, 201

it is treated as a weak read primitive. In contrast, if it can leak 202

critical information, like function address and heap address, 203

we treat it as a strong read primitive. 204

IE
EE P

ro
of

LIU et al.: FROM RELEASE TO REBIRTH: EXPLOITING THANOS OBJECTS IN LINUX KERNEL 3

Fig. 1. Traditional exploitation techniques on UAF and OOB write, and a versatile exploitation strategy for both.

2) Write Exploit Primitive: contains three characteristics.205

First, is the value it can write. Sometimes, a vulnerability only206

allows writing NULL value or limited value, so we treat it as207

a weak write primitive. On the other hand, if it can write208

arbitrary value, we treat it as a strong write primitive. Second,209

is the number of bytes it can write. Writing more bytes is210

useful for placing malicious payload, like the ROP chain [36],211

an address sequence of code pieces to execute malicious212

code against the presence of executable space protection [35].213

If it can only write less than 4 bytes of data for one time214

or for several times in total, we treat it as a weak write215

primitive. Third, is the location it can write. Writing important216

targets (such as function pointer, heap pointer, and kernel217

credential) can contribute to exploitation. Forging function218

pointer can help us to bypass mitigation mechanisms and219

hijack the control-flow, like tty_operations->ioctl220

and tty_struct->ops. Forging heap pointer can help221

us to place exploit payloads into memory or bypass222

some data checks in the execution path of the exp, like223

msg_msg->next. And forging kernel credentials can help224

us escalate privilege, like cred->uid. If it cannot overwrite225

these important data, we treat it as a weak write primitive.226

These important data are stored in kernel structures, which227

may locate in different caches.228

In this paper, we focus on the write primitives as they are229

more harmful and can be easily turned into read primitives via230

an elastic object [4]. We use the above 3 write characteristics231

to judge whether a write primitive is weak or strong.232

C. Traditional Exploitation Techniques233

In this section, we use the UAF and OOB write vul-234

nerabilities as examples to introduce traditional exploitation235

techniques and their limitations. In this paper, we do not236

focus on how to bypass kernel mitigation mechanisms, because237

there are many papers that have already proposed related238

solutions [6], [12], [13], [15], [39].239

1) Exploitation Through UAF: As Fig. 1 (a) depicts, given240

a UAF vulnerability, we first find a function pointer fptr241

in the vulnerable object (i.e., vul obj, the object that is242

accessed after being released) or in an object A pointed to 243

by a pointer ptr from the vulnerable object. Then we find an 244

execution path that can dereference fptr. After the vulnerable 245

object is released in the UAF, we use a spray object (spy 246

obj) to overwrite the vulnerable object with crafted data, 247

consequently, the function pointer fptr is tampered and 248

points to malicious code. Finally, we hijack the control-flow 249

by dereferencing the tampered function pointer. 250

If the vulnerable object in a UAF does not contain a 251

function pointer or there is no execution path to dereference 252

the function pointer, the UAF is regarded as having a weak 253

exploit primitive. Since it cannot successfully tamper with 254

the function pointer, the traditional exploitation technique is 255

unworkable. Fig. 2 shows a UAF vulnerability (CVE-2021- 256

26708) with a typical weak primitive that has limited write 257

ability. After virtio_transport_destruct() has 258

released the structure virtio_vsock_sock (line 4), func- 259

tion virtio_transport_notify_buffer_size() 260

can still access this structure. Consequently, 261

a UAF write occurs (line 12) when function 262

virtio_transport_notify_buffer_size() writes 263

to the freed object vvs->buf_alloc. However, the 264

written value is checked to be no greater than 0xffffffff 265

(line 9). Since buf_alloc is at offset 40 of structure 266

virtio_vsock_sock, we can only write 4 bytes at 267

offset 40 of the freed structure virtio_vsock_sock, 268

which belongs to the kmalloc-64 slab. As structure 269

virtio_vsock_sock does not have a function pointer, 270

there is no function pointer dereference in any execution 271

path. In summary, this UAF vulnerability can only write 272

4 bytes to the insignificant freed chunk and does not have 273

function pointer dereference, so it is categorized as a weak 274

exploit primitive. Moreover, in the kmalloc-64 slab that the 275

vulnerable object belongs to, we cannot find both a suitable 276

spray object and a victim object. Thus, traditional exploitation 277

techniques fail to exploit this vulnerability. 278

2) Exploitation Through OOB Write: As depicted in Fig. 1 279

(b), given a vulnerability with OOB write, we first find a 280

suitable victim object (vtm obj) that is located in the same 281

IE
EE P

ro
of

4 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Fig. 2. CVE-2021-26708, a UAF vulnerability with a weak primitive that
can only write 4 bytes.

Fig. 3. CVE-2021-22555, an OOB write vulnerability with a weak primitive
that can only write two null bytes.

cache as the vulnerable object (vul obj), which is accessed282

out of bounds. The victim object must contain a function283

pointer or a data pointer ptr that points to an object B that284

contains a function pointer (fptr). Similarly, there should be285

an execution path that can dereference fptr. By elaborately286

manipulating the kernel memory layout, the victim object287

can be placed next to the vulnerable object. Then we trigger288

the OOB write to overwrite the victim object and tamper289

fptr. Finally, we hijack the control-flow by dereferencing290

the tampered function pointer fptr.291

It is common to find that some OOBs can just write292

specific values or limited bytes. The former makes it unable293

to control the victim object’s content, and the latter makes294

it hard to find a suitable victim object that contains a func-295

tion pointer. These two weak exploit primitives make the296

traditional exploitation technique fail again. Fig. 3 shows an297

OOB vulnerability (CVE-2021-22555) with a weak primitive.298

In xt_compat_target_from_user(), user can control299

struct target in the kernel (line 2), then it calculates an300

alignment number pad at line 5. An OOB write occurs when301

filling pad NULL bytes at the end of the object (line 7).302

This vulnerability cannot write any significant data except two303

NULL bytes to the adjacent object. Thus, it is a weak exploit304

primitive that can’t be exploited with traditional techniques.305

3) A Versatile Exploitation Strategy: To sum up, if UAF306

has no function pointer dereference in the vulnerable object,307

or OOB has limited write value and write length, we treat308

them as weak exploit primitives. Traditional exploitation309

techniques cannot exploit these weak primitives to escalate 310

privilege. 311

To overcome the limitations mentioned above, we propose 312

to construct a versatile strong exploit primitive. As depicted 313

in Fig. 1 (c), we first manipulate two pointers pointing to 314

two objects (A, B) that are overlapped in the same memory 315

space. Next, we release object A with one pointer and use 316

a victim object (vtm obj) to take it up by memory re- 317

allocation (see ➀). The victim object should have a function 318

pointer or a data pointer that points to another object that 319

contains a function pointer (fptr). Then we release object 320

B with the other pointer and use a spray object (spy obj) 321

to overwrite the victim object with crafted data (see ➁). The 322

function pointer fptr in the victim object would be tampered 323

to fake fptr. Finally, we dereference the tampered function 324

pointer and hijack control-flow. In this strategy, we can decide 325

the size of the two overlapped objects, thus we can choose a 326

suitable victim object of any size we want. This makes up for 327

UAF’s lacking function dereference in the vulnerable object. 328

Meanwhile, we can use heap spraying to craft a whole object 329

with arbitrary value, which breaks the limitation of OOB’s 330

write value and write length. 331

It is very common that some exploit primitives can only 332

write limited bytes of data to insignificant objects, namely 333

weak primitives. The nature of kernel exploitation from vulner- 334

ability to privilege escalation is a process of transforming weak 335

exploit primitives into strong exploit primitives. To realize 336

the above-mentioned versatile exploitation strategy, a special 337

object (we call it the Thanos object) plays a significant role. 338

A Thanos object contains a heap pointer and a releasing 339

path to release the memory pointed to by the heap pointer. 340

By corrupting the heap pointer to point to another existing 341

object, we can create a vulnerable overlapped state where two 342

pointers point to the same object. In the following sections, 343

we will introduce how we use Thanos objects to transform 344

weak primitives into strong primitives with the examples of 345

UAF and OOB write. 346

III. TRANSFER WEAK PRIMITIVES TO STRONG 347

PRIMITIVES VIA THANOS OBJECTS 348

A. Thanos Object 349

To realize the versatile exploitation strategy, we need to use 350

Thanos object in kernel to construct a vulnerable overlapped 351

state that two pointers point to the same object, so that we 352

can release two pointers, respectively, to tamper a function 353

pointer by heap spraying, and finally hijack the control-flow. 354

A Thanos object should meet the following requirements. 355

• A heap pointer. A Thanos object always contains a heap 356

pointer, which is used to be overwritten to point to another 357

existing object to form a vulnerable overlapped state. 358

• An allocation path. It is an execution path through which 359

we can control the allocation of this Thanos object. If the 360

exploit primitive is UAF write, we can allocate a Thanos 361

object to take up the vulnerable object. If the exploit 362

primitive is OOB write, we can allocate a Thanos object 363

right after the vulnerable object. Since in the userspace we 364

usually use a syscall to do the exploit, an allocation path 365

should start from a syscall and ends with the allocation 366

site of a Thanos object. 367

IE
EE P

ro
of

LIU et al.: FROM RELEASE TO REBIRTH: EXPLOITING THANOS OBJECTS IN LINUX KERNEL 5

Fig. 4. Transform a weak exploit primitive into an overlapped state using a
Thanos object.

• A release path. It is a path that starts from a syscall368

to release the heap chunk pointed by the heap pointer369

in the Thanos object. Only by releasing the overlapped370

object twice with different pointers can we use a victim371

object and a spray object to take it up and hijack the372

control-flow.373

B. Constructing Vulnerable Overlapped State374

First, we assume the vulnerability can write at a specific375

offset of a freed object (in UAF) or an adjacent object (in376

OOB). As illustrated in Fig. 4, we find a Thanos object377

that is in the same cache as the vulnerable object. It owns378

a heap pointer ptr1 at the offset that the vulnerability can379

overwrite. The heap pointer points to an object A. After that,380

we apply heap spraying techniques to let the Thanos object381

take up the vulnerable object in UAF or the adjacent object in382

OOB. Then we find another object B that is already pointed to383

by an existing pointer ptr2 in the kernel. Finally, we trigger384

the UAF write or the OOB write to tamper ptr1, making it385

point to B as well. As a result, we succeed in constructing386

a vulnerable overlapped state where two pointers point to the387

same object. We can now perform the versatile exploitation388

strategy mentioned above to escalate privilege.389

Both CVE-2021-26708 in Fig. 2 and CVE-2021-22555 in390

Fig. 3 can be exploited using a Thanos object. For CVE-2021-391

26708, we can transform a kmalloc-64 UAF into an overlapped392

state in kmalloc-4096, which would have both a useful victim393

object and a spray object to perform exploitation. For CVE-394

2021-22555, we can transform a limited OOB write into an395

overlapped state, which would have no limitation on write396

value and write length. This is because we can use a spray397

object to write arbitrary value and whole length to craft the398

victim object.399

IV. TECHNICAL APPROACH400

A. Identify Thanos Objects From the Kernel401

Based on the requirements of the Thanos object, we first402

identify Thanos object candidates with heap pointers. Then403

Fig. 5. The illustration of inter-procedural backward control-flow analysis
and data-flow analysis. The kmalloc() and the free() are representatives of
allocation and release functions (see Table I). The data-flow analysis starts
from the return pointer (rp) of the allocation function and the release pointer
(p′). We should avoid paths that require root privilege or pass an error-
handling branch.

we explore the allocation path starting from an allocation call 404

site. Finally, we explore the release path starting from a release 405

call site. The whole workflow is depicted in Fig. 5. 406

1) Identify Thanos Object Candidates: We mark kernel 407

objects that contain heap pointers as Thanos object candidates. 408

There are mainly two problems in identifying Thanos object 409

candidates, recognizing heap pointers and nested structures. 410

As our approach is based on LLVM intermediate represen- 411

tation (IR), specific pointer types are not clearly labeled. 412

For example, there are several types of pointers, such as 413

stack pointers, heap pointers, and function pointers. When 414

we compile source code into LLVM IR, most definitions 415

of pointers are indistinguishable, like i8*. Although some 416

substructure pointers may have substructure name ahead, like 417

struct.msg_msgseg*, indicating they are heap pointers, 418

other pointers like i8* could be heap pointers too. We mark 419

the objects as candidates as long as they contain pointers. 420

In the kernel, some objects may have nested structures. 421

We concentrate on two types of nested structures. First, if a 422

parent structure contains a substructure that has a heap pointer 423

and they are in the same slab, we treat the parent structure as a 424

Thanos object candidate; Second, if a parent structure contains 425

a pointer that points to a substructure and the substructure 426

contains a heap pointer, we treat the substructure as a Thanos 427

object candidate. For the former, we can directly tamper with 428

the heap pointer in the parent structure. However, for the latter, 429

if we use the parent structure as a Thanos object, we have 430

to first write the substructure pointer and then craft a fake 431

substructure to tamper with the heap pointer. If an exploit 432

primitive allows us to craft a structure, we may find another 433

easier exploitation way. Thus, we suppose that a weak exploit 434

primitive does not have such ability and we do not consider 435

the parent structure of the latter case as a Thanos object. 436

2) Explore Allocation Path: To control the allocation of 437

a Thanos object, we should explore its allocation path. 438

As Fig. 5 illustrates, we first locate all allocation function 439

call sites. There are two representatives of allocation functions 440

on the heap, kmalloc() and kmem_cache_alloc() 441

(Other allocation functions we used are listed in Table I). 442

IE
EE P

ro
of

6 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

TABLE I

THE ALLOCATION AND RELEASE FUNCTIONS WE
USED IN LINUX KERNEL

The former allocates slab on the general cache while the443

latter allocates slab on the special cache. As has been444

stressed, the vulnerable object and the Thanos object should445

be on the same cache. Although most vulnerable objects are446

on the general cache, we still have to record all Thanos447

objects on the special cache because the kernel may call448

find_mergeable() to reduce memory fragmentation by449

merging objects. Notably, Thanos objects whose heap pointers450

point to special cache should be excluded.451

Then, we perform backward inter-procedural control-flow452

analysis to explore the allocation path. We start from allocation453

function call sites and walk backward along the control-flow454

graph. If we can reach a syscall, it means we can use this455

syscall to control the object allocation. Meanwhile, we should456

ensure that this path does not require root privilege. Allocation457

function call sites that are not reachable from a syscall or458

require root privilege are excluded.459

Finally, we perform forward inter-procedural data-flow460

analysis to obtain the object type we allocate. We start from461

the return pointer of the allocation function call sites and walk462

along the data-flow graph to collect the instructions that use463

the pointer and its alias as operands. We call these instructions464

use points. Some instructions like getelementptr and465

bitcast can reveal object types. The getelementptr466

instruction is used to get the address of a structure field467

member and perform address calculation but it does not468

access memory. The bitcast instruction is used to transform469

structure type. By recording the object type, the allocation470

function call site, the cache type, and the syscall, we can easily471

craft exploits. Objects that do not have a feasible allocation472

path will be excluded from Thanos object candidates.473

3) Explore Release Path: To control the release of the474

memory pointed to by the heap pointer in a Thanos object,475

we should explore its release path. As Fig. 5 depictes, we first476

locate all release function call sites. There are two kinds477

of release functions, kfree() and kmem_cache_free(),478

which release slab on general cache and on special cache,479

respectively. Then we perform backward inter-procedural480

control-flow analysis to explore the release path. We start from481

a release function call site and check if we can reach a syscall.482

If we cannot reach a syscall or the release path requires root483

privilege, the release function call site is excluded.484

Then, we perform backward inter-procedural data-flow485

analysis to figure out where the release pointer comes from486

(i.e., the source). If the release function is kfree(), the first487

parameter is the release pointer. We start from the release488

pointer and walk backward along the data-flow graph to record489

all potential sources. The following situations should be taken490

care of. (1) For a constant, a NULL pointer, a value from 491

the getelementptr instruction, or a return value from an 492

allocation function, we record it as a potential source. This is 493

because these instructions might be the start points of a value. 494

(2) For an instruction such as phi, select, icmp, binary 495

operator, unary instruction, or call site to an ordinary function, 496

we recursively traverse its operands to find the real sources. 497

(3) For a formal argument or an instruction, like bitcast 498

or load, we record it as a potential source and recursively 499

traverse its pointer operand. 500

After collecting all potential sources of the release pointer, 501

our next step is to determine that the release pointer is loaded 502

from one Thanos object candidate. LLVM IR usually uses 503

one getelementptr and one load instruction to acquire a 504

field pointer from a structure. If we find a getelementptr 505

instruction followed by a load instruction when traversing 506

potential sources, we regard it as the real source of the release 507

pointer and record the source structure and the offset of the 508

field pointer. After filtering out Thanos object candidates that 509

do not have release paths, we can finally record the detailed 510

information of the remaining Thanos objects, including the 511

release function call site, the syscall, the object type, the rela- 512

tive getelementptr instruction, and the offset of the field 513

pointer. 514

Two issues should be resolved when identifying the 515

release path. Error-handling branches. The kernel uses the 516

error-handling branches to deal with errors, which may release 517

the buffer, dump the error context, and return an error code. 518

If the release path of a Thanos object passes an error-handling 519

branch, then we cannot deterministically control the release 520

anymore. This will make our exploitation unstable or even fail. 521

We identify the error-handling branches by the branch label 522

such as error, exit, and fail in a basic block, so that we 523

can exclude them automatically when performing backward 524

control-flow analysis. 525

Multiple release paths. When there is more than one path 526

to release the same field pointer from the same Thanos 527

object, we should track and record all release paths. As some 528

release paths may implicitly pass error-handling branches, 529

we would miss some true positives if we just track one release 530

path. 531

B. Evaluate the Usability of Thanos Objects 532

We evaluate the usability of a Thanos Object by collecting 533

the constraints of its field members. The higher complexity of 534

the constraints, the lower usability of the Thanos object. When 535

we tamper the heap pointer in a Thanos object, its adjacent 536

field members can be overwritten as well, which can bring in 537

side effect when releasing the heap pointer. We mainly focus 538

on two field member types that tend to cause side effects. 539

1) Data Access: If the field member is a pointer, some 540

instructions on the release path may read the content pointed to 541

by it. If the member pointer is falsely overwritten to point to 542

an invalid memory address, it can cause general page fault 543

(GPF) or even kernel panic. Even if we tamper the field 544

member to be a valid user space address, it can lead to a 545

crash when accessing user space directly from kernel space 546

because the kernel is acquiescently protected by the supervisor 547

mode access prevention (SMAP) scheme [34]. In addition, the 548

IE
EE P

ro
of

LIU et al.: FROM RELEASE TO REBIRTH: EXPLOITING THANOS OBJECTS IN LINUX KERNEL 7

member pointer may also point to nested structures, which549

makes it harder to craft the data (discussed in Section VI-B.3).550

2) Condition Check: If the field member is data, some551

instructions on the release path may check the field member552

to decide which branch to execute. If we falsely craft the field553

member, the kernel may choose the wrong branch and the554

expected release site will be missed. Then we cannot perform555

further exploitation. This type of field member could be a flag556

or a constant that indicates some kernel functionality.557

Thus, it is necessary to collect all the data accesses and558

condition checks of the field members of a Thanos object on559

the release path to evaluate the complexity of the constraints.560

We perform forward data-flow analysis starting from Thanos561

objects to identify the constraints. For each field member,562

LLVM IR uses a getelementptr instruction and a load563

instruction to get it from a Thanos object. We can trace the564

data-flow to find all of its use points. There are four types of565

use points that we should further analyze.566

• Common instructions, like getelementptr, binary567

operator, unary instruction, select, and phi, we568

recursively traverse their destination operands to find569

where they flow to.570

• Call instructions, we follow up its callee function and571

analyze the corresponding formal argument to trace more572

use points.573

• Load instructions, which loads a value from a pointer.574

We treat it as an access point if it is on the release575

path. If it is the first load instruction, it means it gets576

a field member directly from one Thanos object. Other-577

wise, it means there exist nested accesses (discussed in578

Section VI-B.3).579

• Compare instructions, like icmp, we treat it as a check580

point if it is on the release path. If the first operand581

of icmp instruction originates from a Thanos object,582

we then perform backward data-flow analysis to find the583

source value of the second operand. Using the predicate584

and the source value, we can represent the constraint of585

the field member.586

Finally, we use unified expressions to depict the con-587

straints of a Thanos object, which is beneficial to pairing588

vulnerabilities with suitable Thanos objects. As Fig. 6 shows,589

there are mainly two expression types. First, if the field590

member is a kernel pointer and it does not appear in a compare591

instruction, we label it as an access point and then figure592

out if it points to nested structures. Only when there exists a593

nested access instruction exactly on the release path, can we594

label it pointing to nested structures. We use the expression595

(of f | kn) to represent such a constraint, where off denotes596

the offset of a field member in the Thanos object, and kn597

denotes that it is a kernel address and points to n layers of598

nested structures. Second, if the field member appears in a599

compare instruction, we use the expression (of f | range) to600

represent the constraint, where range denotes the range that601

the field member has to satisfy to reach the release site. For602

example, “[0, 8) == NULL” means that the first 8 bytes of a603

Thanos object should equal NULL. If the field member has604

a specific range, it would be easy for us to craft. However,605

if the field member is a kernel pointer, we should place a606

valid kernel address or even craft the memory area pointed to607

by the pointer, which is more difficult.608

Fig. 6. Identifying filed member constraints. f1 denotes the field member
flows into a compare instruction (condition check). f2 denotes the field
member points to a substructure and it is accessed on the release path (data
access).

C. Pairing Vulnerabilities With Thanos Objects 609

To pair the vulnerabilities with usable Thanos objects, 610

we should extract the capability of the vulnerability. Recall 611

that our target vulnerabilities are UAF which has no function 612

pointer dereference and OOB write which has limited write 613

length or write value, so we focus on the write capability of 614

UAF and OOB. 615

First, we figure out which cache type the vulnerable object 616

belongs to by pinpointing the allocation site of the vulnerable 617

object. This is important because the Thanos object can be 618

overlapped with or adjacent to the vulnerable object only if 619

they are in the same cache. Then we debug the vulnerability to 620

analyze its write capability when triggering the vulnerability. 621

There are three factors that should be considered: (1) the 622

offset where it can write in the vulnerable object (UAF) or the 623

adjacent object (OOB), (2) the write length, and (3) the write 624

value (i.e., arbitrary or limited value). We use a formal expres- 625

sion (V Cache, [(of f1, len1, val1), . . . , (of fn, lenn, valn)]) to 626

represent the write capability, where V Cache indicates the 627

cache type, of fi , leni and vali represent the write offset, the 628

write length, and the write value, respectively. For example, 629

the write capability of CVE-2021-26708 can be represented 630

as (kmalloc − 64, (40, 4, arb)), which indicates it can write 631

4 arbitrary bytes at offset 40 of a slab from kmalloc-64 cache. 632

The write capability of CVE-2021-22555 can be represented 633

as (kmalloc − 4096, (0, 2, NU L L)), which indicates it can 634

write 2 NULL bytes at the front of a slab from kmalloc- 635

4096 cache. Notably, one vulnerability may have several write 636

offsets. 637

With the expression of Thanos objects and vulnerabilities 638

presented above, we can pair vulnerabilities with Thanos 639

objects. Given a vulnerability, we first filter out Thanos objects 640

that do not share the same cache with the vulnerable object. 641

Then we check the write capability of the vulnerability to find 642

whether it can overwrite the heap pointer of the remaining 643

Thanos objects based on the expressions. This can further 644

narrow down the Thanos objects useful for exploitation. 645

Finally, we check if the vulnerability will bring side effects 646

when overwriting the field members of the Thanos objects. 647

IE
EE P

ro
of

8 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

This can provide supplemental information for evaluating the648

complexity of exploitation.649

There are two situations that we should pay attention to.650

First, if the vulnerability can only write limited value like651

NULL bytes, we should ensure that it can overwrite just one652

or two bytes of the 8-byte target heap pointer. Recall that the653

key of our exploitation approach is to tamper with the heap654

pointer to point to another overlapped object. By spraying655

many objects in the kernel memory and changing just one656

or two bytes of the heap pointer (the least significant bytes at657

best), we can make the heap pointer point to a certain object658

by chance and then perform further exploitation. In practice,659

by elaborately arranging memory layout, this chance is accept-660

able. However, if the vulnerability destroys more than two661

bytes of the heap pointer, the chance of hitting another object662

will be very low. Because the kernel heap address is not663

predictable and we cannot write an arbitrary value to craft664

the heap pointer. Second, if the vulnerability can write an665

arbitrary value, we can first leak the address of the overlapped666

object to make the exploitation deterministic. There are several667

approaches to leaking the address. For example, we can use668

other information leak vulnerabilities or elastic objects [4].669

Sometimes a kernel warning can reveal kernel addresses, too.670

However, this is out of the research of this paper.671

We design an automated algorithm to pair a kernel vulner-672

ability with suitable Thanos objects. As Algorithm 1 shows,673

the algorithm inputs include the cache name of the vulnerable674

object (V Cache), the capability of the vulnerability (Cap),675

and the set of all Thanos objects (ST ha). The output is a676

set of the matched Thanos objects. First, we filter out the677

objects which are not in V Cache (Line 3). Then we traverse678

the vulnerability capability (Line 5) and the offset set of heap679

pointers in one Thanos object (Line 6). If the write value is a680

limited value (not a heap pointer) and the write length is more681

than two bytes (the least two bytes), then we skip this heap682

pointer of the Thanos object (Line 7-9). Otherwise, if it can683

write the least bytes of the heap pointer (including arbitrary684

value and limited value), we add the Thanos object into S685

(Line 10-11).686

V. IMPLEMENTATION687

To realize the approach mentioned above, we implemented688

a static analysis tool named TAODE. As our static analysis689

is based on LLVM IR, we should first compile the kernel690

source code into LLVM bitcode files. Then, we perform inter-691

procedural control-flow analysis and data-flow analysis on the692

generated LLVM IR. During the initializing stage, we apply693

two-layer type analysis from [20] and [21] to construct a694

field-sensitive call graph and the build-in AliasAnalysis pass of695

LLVM to perform alias analysis. In the following, we present696

some implementation issues and solutions.697

A. Privilege Check on the Path698

Since our exploitation strategy requires normal privilege,699

we should ensure that the allocation path and the release path700

do not require root privilege. Linux kernel uses capable()701

to check the process credentials and decide whether the702

process has the privilege to execute this path. If its parameter703

is CAP_SYS_ADMIN, it means requiring root privilege. When704

Algorithm 1 Pairing Vulnerability With Thanos Object
Input: V Cache: The cache of the vulnerable object;
Cap: Capability set of 3-tuple <off, len, val>;
ST ha : Set of all Thanos objects
Output: S: Set of the matched Thanos objects
1: Procedure MATCHVULTHA(V Cache, Cap, ST ha)
2: S = ∅
3: for all ThaO r1 using V Cache in ST ha do
4: A p = heap pointer offset in r1
5: for (of fv , lenv , valv) in Cap do
6: for of ft in A p do
7: if (valv is limited) && (valv is not hptr) then
8: if (of fv ≤ of ft) && (of ft +2 ≤ of fv+lenv) then
9: continue
10: if (of fv ≤ of ft) && (of ft ≤ of fv+lenv) then
11: S = S ∪ r1
12: return S

we perform backward control-flow analysis, we also check 705

if the path passes capable(CAP_SYS_ADMIN). For other 706

parameters, like CAP_NET_ADMIN, we don’t exclude relevant 707

paths as it is useful for exploitation if we can control a 708

privileged container. 709

B. Special Cache Type 710

In the kernel, there are special slabs that are dedicated for 711

specific objects (e.g.,fuse_file). If the heap pointer of the 712

Thanos object points to such special slabs, it would be difficult 713

to find suitable victim objects and spray objects to proceed 714

with the exploitation. Thus, we should exclude such Thanos 715

object candidates with special slabs. To have the overlapped 716

object released into a general cache, we must make sure that 717

the heap pointer points to a general slab. TAODE records the 718

release sites of all potential Thanos objects to identify the one 719

with special slabs (i.e., released by kmem_cache_free()) 720

and exclude them. 721

VI. EVALUATION 722

In this section, we conduct experiments to validate our 723

versatile exploitation strategy proposed in this paper, aiming 724

to answer the following research questions: RQ1: Can TAODE 725

effectively identify Thanos objects from real-world OSes? 726

RQ2: Are the identified Thanos objects usable in exploiting 727

real-world vulnerabilities with the versatile strategy? RQ3: 728

Does our exploitation strategy have any other side effects in 729

kernel exploitation? 730

A. Experiment Setup 731

1) Setup: All experiments are conducted in an Ubuntu- 732

18.04 system running on a desktop with 128G RAM and 733

Intel(R) Core i9-10900KF CPU @ 3.70GHz. Our TAODE is 734

based on LLVM-10.0.0 and we use Clang-10.0.0 to compile 735

Linux kernel-v5.3 into LLVM IR. Then TAODE can perform 736

static analysis on the generated LLVM IR. To test real-world 737

kernel vulnerabilities, we install QEMU-4.2.1 on Ubuntu. 738

IE
EE P

ro
of

LIU et al.: FROM RELEASE TO REBIRTH: EXPLOITING THANOS OBJECTS IN LINUX KERNEL 9

2) Dataset: TAODE is evaluated using kernels including739

Linux 5.3, FreeBSD 12.1, XNU 10.15. We also evaluate740

our exploitation approach against 20 kernel vulnerabilities741

(9 UAF writes and 11 OOB writes) that have weak exploit742

primitives. Among them, 14 are associated with CVE IDs743

and the rest without CVE IDs are collected from syzbot [11].744

As is depicted in Table IV, we summarized their limited write745

capabilities. The weakest primitive can only write one NULL746

byte at the front of the adjacent slab.747

3) Mitigation Setting: To be close to real-world exploita-748

tion, we set up four common mitigation mechanisms for the749

kernel. We enabled KASLR [23], which loads the kernel to750

a random location in memory. We enabled SMEP [14] and751

SMAP [34] protection to prevent direct userspace access in752

kernel execution. We enabled KPTI [8] to prevent it from CPU753

side-channel attack. These four mitigation mechanisms are754

the fundamental configurations of recent major Linux release755

versions. If a generated exploit can hijack kernel control-flow756

and bypass these four mitigation mechanisms, we consider that757

it can perform successful exploitation.758

4) Info-Leak Setting: As we mentioned in the Section IV-759

C, sometimes we have to know the address of the target760

overlapped object first, so as to forge the heap pointer of761

the Thanos object during exploitation. For there are existing762

approaches to perform info-leak and it is out of our research,763

we write a vulnerable driver to simulate an info-leak vulnera-764

bility or other info-leak techniques. The vulnerable driver can765

allocate, read and release a heap chunk. As the read size is766

not checked, we can perform an out-of-bounds read to leak767

the kernel address. This module is automatically loaded with768

the vulnerable kernel.769

B. Thanos Object Identification770

1) Overall Results: We first use TAODE to analyze the771

Linux kernel. We analyzed 17,554 bitcode files with 76,670772

structures in Linux kernel and finally determine 63 potential773

Thanos objects. The analysis took 21 hours. Then, we analyze774

these objects manually and confirm 49 as true positives (listed775

in Table III). The false positives are nearly 22% (i.e., 14 false776

positives), which is acceptable for a static analysis approach.777

To demonstrate the pervasiveness of Thanos objects,778

We also analyzed FreeBSD and XNU with TAODE. The779

overall results are depicted in Table V. It took 8 hours to780

analyze FreeBSD and finally 76 Thanos objects were found,781

with 61 confirmed. Since only a small portion of XNU’s782

source code is available, it just took 2 hours to analyze783

XNU and 52 Thanos objects were found with 34 confirmed.784

The results indicate that Thanos objects are also pervasive in785

FreeBSD and XNU, and TAODE is effective in identifying786

Thanos objects in other OSes. TAODE needs minor modifica-787

tion (e.g., allocation and release APIs) to adapt to different788

OSes. Since it is difficult to find suitable vulnerabilities to789

validate the Thanos objects from other OSes, in the following790

analysis, we concentrate on the results of Linux. Detailed791

information on Thanos objects from other OSes is available792

with our released project.793

2) Detailed Results: We list all the Thanos objects that we794

identify and confirm from Linux in Table III. The results in795

Table III (from the column on the left to the right) indicate796

(1) the caches to which a Thanos object belongs, (2) the797

TABLE II

OVERALL RESULTS OF THANOS OBJECT IDENTIFICATION

structure type of a Thanos object, (3) the offset of the target 798

heap pointer in a Thanos object, (4) the constraints that an 799

adversary has to satisfy to successfully release the overlapped 800

object pointed to by the heap pointer. 801

Based on the observation of the results, we find that the 802

identified Thanos objects cover most of the general caches 803

and some special caches (e.g., rsb_cache). In the “cache” 804

column, * denotes the size of the cache can be equal to or more 805

than this number, which means these objects could belong 806

to all the general caches equal to or greater than they are 807

specified in the table. These size-alterable Thanos objects (12 808

out of 49) could significantly enrich our object choices during 809

exploitation. In the “offset” column, we can see that some 810

objects have multiple heap pointers, which can be used in 811

the vulnerabilities that have different write capabilities. The 812

two characteristics discussed above could potentially improve 813

the exploitability of a vulnerability. In the last column of 814

Table III, we specify the constraint set based on the data 815

accesses and condition checks on the release path. To release 816

the overlapped object successfully, we should ensure the 817

field members satisfy the relevant constraints. Notably, some 818

objects have no constraint (i.e., ∅), which means they are easy 819

to craft during exploitation. The majority of constraints come 820

from data accesses, so the relevant field members must point 821

to proper memory to avoid access errors on the release paths. 822

3) False Reports: As a static approach, our approach 823

inevitably introduces false positives and false negatives. The 824

disposal of the following situations in TAODE can incur false 825

reports. 826

a) Nested structures: When we perform backward 827

data-flow analysis from the release pointer, one 828

release pointer may originate from several object 829

types. For example, struct x509_certificate-> 830

struct public_key_signature*sig->u8*digest. 831

The release pointer *digest belongs to structure 832

public_key_signature, meanwhile, its structure pointer 833

*sig also belongs to structure x509_certificate. Thus, 834

we find two source object from the release pointer *digest. 835

However, in this case, we would ignore the middle structure 836

x509_certificate which is too complicated to craft this 837

structure under the circumstance of a weak exploit primitive. 838

Consequently, such simplification might cause false negatives. 839

b) Nested accesses: When there are nested accesses 840

through the heap pointer on the release path of a Thanos 841

object, we regard such Thanos objects as too complicated to 842

exploit. This is because if we tamper with this heap pointer to 843

point to the overlapped object, we must first elaborately craft 844

valid data on the overlapped object. However, it is too difficult 845

to craft complicated data (e.g., a valid pointer pointing to a 846

substructure) except for constants on the overlapped object 847

in advance, so the release path may trigger page fault and 848

IE
EE P

ro
of

10 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

TABLE III

THANOS OBJECTS IDENTIFIED AND CONFIRMED IN LINUX. IN THE “CACHE” COLUMN, * DENOTES THE SIZE OF THE CACHE CAN BE EQUAL OR
MORE THAN THIS NUMBER. IN THE “CONSTRAINTS” COLUMN, ∅ DENOTES DATA DISCLOSURE IMPOSES NO CRITICAL CONSTRAINTS. Arg

REPRESENTS A SYSTEM CALL ARGUMENT UNDER A USER’S CONTROL. kn STANDS FOR A KERNEL ADDRESS WHICH POINTS TO N

LAYERS OF NESTED STRUCTURES

fail to release it. A detailed example is given in Fig. 7.849

Structure inet6_dev is allocated at Line 3 and released850

at Line 13. However, Line 15 on the release path access851

pmc->idev (two layers of nested accesses) and pmc is the852

heap pointer idev->mc_tomb from structure inet6_dev.853

So we excluded the Thanos objects whose heap pointer is854

accessed on the release path in a complicated nested way, 855

which could also cause false negatives. 856

c) Error handling branches: When the release path of a 857

Thanos object passes an error-handling branch, then we cannot 858

reliably control the release anymore, which would fail the 859

exploitation. TAODE identify the error-handling branches by 860

IE
EE P

ro
of

LIU et al.: FROM RELEASE TO REBIRTH: EXPLOITING THANOS OBJECTS IN LINUX KERNEL 11

Fig. 7. An example that nested access through the heap pointer occurs on
the release path.

the branch label such as error, exit, and fail in a basic861

block and exclude such candidates. However, some labels (e.g.,862

out, clean, and free) are used by both the error-handling863

branches and normal branches. TAODE ignores such equivocal864

labels when identifying the error-handling branches, which865

might result in false positives. A detailed example is given866

in Fig. 8. Structure map_info is allocated at Line 8. If the867

allocation fails, it would jump to the error-handling branch868

(Line 9) and calls free_map_info() to do release work.869

Fortunately, the false positives can be removed easily by870

manual analysis.871

Answer to RQ1: Based on the above analysis, we can
conclude that TAODE can effectively identify Thanos
Objects from real-world OSes with acceptable false rates.

C. Exploitation on Real-World Vulnerabilities872

To prove the usefulness of the identified Thanos objects,873

we use them to exploit 20 real-world vulnerabilities. We list all874

the kernel vulnerabilities used for our evaluation in Table IV.875

From the column on the left to right, the results shown876

in the table indicate (1) the CVE-ID or Syzkaller-ID of877

the vulnerability, (2) the vulnerability type, (3) the cache878

type of the vulnerable object, (4) the capability of the vul-879

nerability summarized manually, (5) which weak type the880

vulnerability belongs to, (6) whether traditional techniques can881

exploit the vulnerability, (7) the number of suitable Thanos882

objects useful for the exploitation of the vulnerability, (8)883

whether the vulnerability can be exploited by using Thanos884

objects.885

1) Summary of Real-world Vulnerability Exploitation: Of886

the 20 vulnerabilities, 15 are successfully exploited using887

Thanos objects. Among the 15 exploited vulnerabilities,888

8 OOB vulnerabilities have very limited write capabilities889

and 4 UAF vulnerabilities have no function pointer derefer-890

ence, making traditional exploitation techniques fail. One OOB891

(CVE-2017-7184) that has unlimited write capability can be892

exploited both by traditional techniques and Thanos objects.893

This indicates that Thanos objects are effective in exploiting894

Fig. 8. An example that error-handling branch calls release function.

both weak primitives and strong primitives. Moreover, all 895

exploitable vulnerabilities except CVE-2016-4557 have more 896

than one Thanos object available for exploitation. Some vul- 897

nerabilities have a great many useful Thanos objects, this 898

is because they have better write capabilities in relative or 899

they can corrupt heap data in various caches. For example, 900

CVE-2017-7184 can corrupt 7 cache types with arbitrary 901

length, so there are 43 objects at most that can be used 902

to exploit. This implies that TAODE could provide a secu- 903

rity researcher with various approaches to craft a working 904

exploit. 905

2) Case Study of CVEs: We first take CVE-2017-7533 906

as an example to show how the Thanos object is used 907

in the exploitation. As Fig. 9 shows, CVE-2017-7533 908

is an OOB write vulnerability that can overwrite 11 909

arbitrary bytes to the adjacent heap chunk in kmalloc- 910

96. The function inotify_handle_event() first cal- 911

culates a length alloc_len (Line 8 to Line 10) and 912

allocates a buffer (Line 13) to store the vulnerable 913

object inotify_event_info. Then it copies a string 914

file_name to the buffer (Line 16). However, another thread 915

may change the file_name to a longer string between 916

Line 9 and Line 16, which results in a buffer overflow. 917

Though it can write 11 arbitrary bytes, it can’t overwrite 918

any function pointers, thus, we regard it as having a weak 919

primitive. 920

To exploit CVE-2017-7533 using our strategy, first, 921

we should find a Thanos object also in cache kmalloc- 922

96 with a heap pointer in the front, so that the heap 923

pointer can be overwritten by the vulnerability. We found 924

6 eligible Thanos objects: cfg80211_nan_func_filter, 925

pneigh_entry, msg_msg, ctl_table, usb_request, 926

and port_buffer. Then we use heap spraying techniques 927

to put the selected Thanos object (i.e., port_buffer) right 928

IE
EE P

ro
of

12 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

TABLE IV

THE SUMMARY OF EXPLOITABILITY OF THE VULNERABILITIES WE USED. IN THE “CAPABILITY” COLUMN, arb DENOTES THAT THE VULNERABILITY
CAN WRITE ARBITRARY VALUE, * DENOTES THAT THE WRITE OFFSET AND THE WRITE LENGTH CAN BE ARBITRARY, AND hptr DENOTES

THAT THE WRITE VALUE IS A HEAP POINTER. IN THE “TRADITIONAL EXPLOITATION” AND “USING THANOS OBJECTS” COLUMNS,
WE USE ✓ AND ✗ TO SHOW IF THE EXPLOITATION SUCCEED BY USING TRADITIONAL TECHNIQUES OR THANOS OBJECTS.

IN THE SEVENTH COLUMN INDICATES THE NUMBER OF THANOS OBJECTS USEFUL FOR THE EXPLOITATION OF THE
CORRESPONDING VULNERABILITY

after the vulnerable object (i.e, inotify_event_info).929

Next, we trigger the overflow and overwrite the heap pointer930

of the Thanos object to point to another existing heap chunk in931

kmalloc-1024, which has appropriate victim object and spray932

object for exploitation. After that, we release the overlapped933

chunk twice using the existing pointer and the fake heap 934

pointer of the Thanos object, respectively. Finally, we use a 935

victim object (such as tty_struct or pipe_buffer) and 936

a spray object (such as the linear buffer of sk_buff) to take 937

up the released chunk respectively. The spray object can craft 938

IE
EE P

ro
of

LIU et al.: FROM RELEASE TO REBIRTH: EXPLOITING THANOS OBJECTS IN LINUX KERNEL 13

Fig. 9. Source code snippet of CVE-2017-7533.

a fake function pointer (pipe_buffer->ops->release)939

in the victim object to hijack the control-flow.940

For CVE-2021-26708, which can write 4 arbitrary bytes941

at offset 40 in kmalloc-64, TAODE found 3 Thanos objects942

available: orangefs_bufmap, netlbl_lsm_catmap943

and msg_msg. While for CVE-2021-22555, which can944

overwrite 2 NULL bytes in the adjacent kmalloc-945

4096, TAODE found 5 Thanos objects available:946

cfg80211_nan_func_filter, pneigh_entry,947

ctl_table, msg_msg and port_buffer. Both CVE-948

2021-26708 and CVE-2021-22555 can overwrite the heap949

pointer of corresponding Thanos objects to point to an existing950

heap chunk and release it. Then we can use the versatile951

exploitation strategy to hijack control-flow and escalate952

privilege.953

3) Analysis of the Failed Cases: Among the 20 tested954

vulnerabilities, 5 of them are failed to find suitable objects955

for their exploitation. We classify these failures into two956

categories. First, some vulnerabilities can only write at a957

special cache or write at an unusual offset. For example,958

the vulnerable object of bf96\ldots [30] is in a spe-959

cial cache named ip_dst_cache, and there is no Thanos960

object in the same cache found. As for CVE-2018-18559961

and CVE-2017-15649, they can only write at a large offset962

(1328 and 2160) but we cannot find a Thanos object with a963

heap pointer at the same offset. Second, some vulnerabilities 964

will write 4 NULL bytes to the adjacent object, such as 965

aaa3\ldots [32] and CVE-2016-6516. We use an example 966

to illustrate the difference of exploitation between 2 NULL 967

bytes write and 4 NULL bytes write. Assume the vulnerable 968

object is in the kmalloc-256 cache and there are two pointers 969

pointing to two adjacent heap chunks in the kmalloc-256 970

cache. The first chunk is at 0xffffc9d0nnnnn000 pointed to 971

by ptr1, while the second chunk is at 0xffffc9d0nnnnn100 972

pointed to by ptr2. The variable n can be an arbitrary 973

hexadecimal number (0 ≤ n ≤ 0xf). We use the two write 974

capabilities to change the least two or four bytes of ptr2 975

respectively and calculate the possibility that ptr2 will point 976

to the first chunk. The 2 NULL bytes write can change ptr2 977

to 0xffffc9d0nnnn0000, while the 4 NULL bytes write can 978

change ptr2 to 0xffffc9d000000000. As the kernel heap 979

address is randomized, the chances that the first chunk is 980

at 0xffffc9d0nnnn0000 and 0xffffc9d000000000 are 1/16 and 981

1/1048576 (1/0 × 100000). Therefore, the success rate of 982

creating the overlapped state using 4 NULL bytes write is 983

quite low. An appropriate heap spraying strategy can improve 984

the success rate a little, but it is still unacceptable in practice. 985

This is why we cannot find suitable Thanos objects for 986

aaa3\ldots [32] and CVE-2016-6516. As we have tested 987

in practice, only 1 or 2 NULL bytes write could have an 988

acceptable success rate. 989

Answer to RQ2: Based on the exploitation of real-
world vulnerabilities, we can conclude that the identified
Thanos objects are usable as long as they are matched
with suitable vulnerabilities.

D. Extra Benefits of Using Thanos Objects 990

1) Bypassing SMAP: In our experiments, two UAFs (CVE- 991

2016-10150 and CVE-2016-0728) failed to be exploited by the 992

traditional exploitation method owing to the protection of the 993

SMAP scheme in Linux, however, they can still be exploited 994

using our strategy. This is because, when exploiting these two 995

vulnerabilities, the vulnerable objects in them are too small to 996

place the exploit payloads. Traditional exploitation methods 997

seek to place the payload in the user space, but reading user 998

content directly from the kernel is prohibited by the SMAP 999

scheme. Therefore, a precondition of the traditional exploita- 1000

tion method is disabling SMAP, otherwise, the exploitation 1001

would be failed. However, our strategy can use Thanos objects 1002

to transform the vulnerable objects to bigger kernel slabs that 1003

have more space to craft exploit payloads, which bypasses the 1004

SMAP. This indicates an advantage of using the Thanos object 1005

is bypassing certain kernel protection scheme. 1006

2) Utilizing Leaked Heap Pointer: Using Thanos objects 1007

has another merit that it can better utilize the leaked infor- 1008

mation. For traditional exploitation techniques, the leaked 1009

information is useful only when it is a function pointer or 1010

an address of a global variable, which can be helpful to 1011

bypass KASLR. Whereas information such as the address of 1012

an ordinary heap pointer is mostly useless. However, for our 1013

approach, the address of a heap pointer is also useful, which 1014

can be used to construct the vulnerable overlapped state. For 1015

example, CVE-2022-25636 can leak the address of a heap 1016

IE
EE P

ro
of

14 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

pointer that points to object net_device. Based on this1017

heap pointer, we can use a Thanos object to release object1018

net_device and use a spray object to tamper the func-1019

tion table pointer in object net_device, finally, hijacking1020

the control-flow. Hence, our exploitation method can take1021

advantage of the seemingly useless leaked heap pointer in1022

the exploitation. Given such a reason, Thanos objects can1023

be used to break certain vulnerability patches. For example,1024

given an exploitable double-free vulnerability, even when it1025

has been patched (usually by eliminating one redundant free1026

operation), the address of the vulnerable object is still known.1027

The traditional exploitation approach is unworkable as only1028

one free operation is left. However, our approach is still1029

feasible as the address of the vulnerable object is known and1030

the object is pointed to by a pointer. We can find a suitable1031

Thanos object to release the vulnerable object and use a spray1032

object to tamper with the function pointer in it, finally, the1033

control-flow can be hijacked. Since we haven’t found a real1034

example, it is only a theoretical assumption.1035

Answer to RQ3: Using Thanos objects has extra
benefits, such as bypassing the SMAP scheme and better
utilizing the leaked heap pointer, both can facilitate the
exploitation.

VII. DISCUSSION1036

A. The Accuracy of Object Identification1037

The accuracy of Thanos object identification is determined1038

by the static analysis used in TAODE. First, TAODE employs1039

the two-layer type analysis to construct control-flow graph1040

and the LLVM built-in alias analysis pass to do alias analy-1041

sis. Then, TAODE performs inter-procedural control-flow and1042

data-flow analysis to explore the allocation path and the1043

release path, which is the main part of TAODE. Therefore,1044

the false positives and the false negatives mainly originate1045

from these two procedures. Due to the resource constraints1046

and the nature of static analysis, we cannot get an accurate1047

control-flow and data-flow graph, making it hard to find the1048

allocation path and the release path in deeper paths. And1049

this is also hard to confirm by manual analysis in such a1050

huge system. Second, as we have mentioned in the evaluation,1051

nested structures, nested accesses and error handling branches1052

during the control-flow and data-flow analysis can also bring1053

in false reports.1054

B. Application of the Thanos Object1055

In reality, large numbers of vulnerabilities are regarded as1056

“unexploitable” or underestimated owing to the difficulty in1057

exploiting the weak primitives. Using the Thanos objects,1058

we can transform weak primitives into strong primitives.1059

Under this circumstance, such “unexploitable” vulnerabilities1060

are reborn and would have a serious impact on the system1061

security. We have proved with real-world vulnerabilities the1062

feasibility of transforming weak primitives to strong primitives1063

using Thanos objects. More importantly, we have identified1064

numerous eligible Thanos objects from Linux, XNU, and1065

FreeBSD. These Thanos objects can be paired with suitable1066

vulnerabilities to make the exploitation feasible, and some of 1067

them can even bypass the existing mitigation mechanisms. For 1068

example, CVE-2016-10150 and CVE-2016-0728 are two UAF 1069

vulnerabilities that failed to exploit with traditional techniques 1070

owing to the SMAP mechanism in the Linux kernel. However, 1071

using Thanos objects, both of them can bypass SMAP and 1072

become exploitable again. Moreover, the exploitation approach 1073

with Thanos objects can better utilize the leaked information, 1074

such as the address of an ordinary heap pointer (CVE-2022- 1075

25636). Based on this, Thanos objects can be used to break 1076

certain vulnerability (e.g., double-free) patches. 1077

C. The Distinction From Double-Free 1078

Our versatile exploiting strategy needs to release an over- 1079

lapped object twice so as to use a victim object and a spray 1080

object to take up the vulnerable object respectively. Though 1081

similar to the commonly seen exploitation of the double-free 1082

vulnerability, our strategy is different from it. First, in the 1083

double-free exploitation, the vulnerable overlapped state is 1084

caused by the same object (i.e., the vulnerable object), while 1085

in our versatile exploitation strategy, the vulnerable overlapped 1086

state can be caused by the same object type or different object 1087

types (as long as they are in the same cache). Second, in the 1088

double-free exploitation, the cache of the overlapped state is 1089

fixed, while in our versatile strategy we can decide the size of 1090

the overlapped object by controlling the heap pointer in the 1091

Thanos object. Third, in some caches, it is difficult to find 1092

both a perfect victim object and a perfect spray object at the 1093

same time. It fails to exploit the double-free if the vulnerable 1094

object falls in one of these caches and has no function pointer 1095

dereference itself. However, in our versatile strategy, it is much 1096

easier to exploit by constructing the vulnerable overlapped 1097

state in a different cache that has abundant victim objects 1098

and spray objects available. In summary, using the Thanos 1099

object, our versatile exploitation strategy is more flexible and 1100

practical than the traditional double-free exploitation. Besides, 1101

our strategy is also useful to exploit a double-free vulnerability. 1102

D. Potential Mitigation Mechanisms 1103

To defend against the versatile exploitation strategy based 1104

on the Thanos object, we can use the following alleviation 1105

approaches. First, the structure layout randomization [7] can 1106

randomize the offsets of field members in a structure, pre- 1107

venting an adversary from predicting the location of sensitive 1108

structure fields in kernel memory. However, Chen et al. [4] put 1109

forward a solution to bypass it. Second, we can isolate Thanos 1110

objects that TAODE identifies into individual shadow caches, 1111

which prevents an adversary from putting the Thanos object at 1112

or next to the vulnerable object. However, this approach should 1113

consider the performance overhead and it requires searching 1114

out all available Thanos objects. 1115

VIII. RELATED WORK 1116

A. Kernel Exploitation 1117

SemFuzz [40] uses Natural Language Processing to extract 1118

vulnerability-related text (e.g., CVE reports and Linux git logs) 1119

and guide the semantics-based fuzzing process to generate PoC 1120

exploits automatically. Lu et al. [22] proposed a deterministic 1121

IE
EE P

ro
of

LIU et al.: FROM RELEASE TO REBIRTH: EXPLOITING THANOS OBJECTS IN LINUX KERNEL 15

TABLE V

COMPARISON WITH OTHER TOOLS

stack spraying technique and an exhaustive memory spraying1122

technique to facilitate the exploitation of uninitialized uses.1123

FUZE [38] utilizes kernel fuzzing along with symbolic execu-1124

tion to identify, analyze, and evaluate the system calls valuable1125

and useful for kernel UAF exploitation. KEPLER [37] can1126

automatically generate a “single-shot” exploitation chain to1127

facilitate the evaluation of control-flow hijacking primitives in1128

the Linux kernel. SLAKE [5] uses static and dynamic analysis1129

techniques to explore the kernel objects that are useful for1130

kernel heap spraying, and the author proposed a technical1131

approach to facilitate the slab layout adjustment.1132

For kernel OOB vulnerabilities, KOOBE [3] applies a1133

novel capability-guided fuzzing solution to uncover hidden1134

capabilities, and a way to compose capabilities together to1135

further enhance the likelihood of successful exploitation. For1136

kernel non-inclusive multi-variable races, EXPRACE [18]1137

can turn hard-to-exploit races into easy-to-exploit races by1138

manipulating an interrupt mechanism during the exploitation.1139

Zeng et al. [41] proposed a new stabilization technique,1140

called Context Conservation, to improve exploitation reliabil-1141

ity for double-free and UAF vulnerabilities. SyzScope [42]1142

and GREBE [19] both apply a new kernel fuzzing technique to1143

explore all the possible error behaviors that a kernel bug might1144

bring about. However, no research can tackle the problem1145

when a vulnerability has a weak exploit primitive. Specifically,1146

a UAF may have no function pointer dereference and an OOB1147

write may have limited write length and write value. Using1148

Thanos objects, we can transform a weak exploit primitive1149

into a strong exploit primitive to promote the exploitation.1150

B. Bypassing Kernel Mitigation Mechanisms1151

Kem et al. [15] proposed a new kernel exploitation tech-1152

nique, called return-to-direct-mapped memory (ret2dir), which1153

bypasses all existing ret2usr defenses, namely SMEP [14],1154

SMAP [34], PXN [2], KERNEXEC [26], UDEREF [25],1155

and kGuard [16]. When kernel physmap was set to be non-1156

executable, Xu et al. [39] proposed two practical memory1157

collision attacks to exploit UAF: An object-based attack that1158

leverages the memory recycling mechanism of the kernel1159

allocator to achieve freed vulnerable object covering, and a1160

physmap-based attack that takes advantage of the overlap1161

between the physmap and the SLAB caches to achieve a1162

more flexible memory manipulation. In the wild, the adversary1163

usually constructs ROP chain [36] to bypass SMEP and flips1164

corresponding bits in the cr4 register [17] to bypass SMAP.1165

There are several approaches to defeating KASLR. Gruss1166

et al. [12] and Jiang et al. [13] utilize hardware attributes1167

and side-channel attacks to leak kernel information. Cho1168

et al. [6] present a generic approach that converts stack-based1169

information leaks in Linux kernel into kernel-pointer leaks. 1170

ELOISE [4] utilizes static/dynamic analysis methods to pin- 1171

point elastic kernel objects that can be used to leak kernel 1172

information and then employs constraint solving to pair them 1173

to corresponding kernel vulnerabilities. Though our work does 1174

not focus on bypassing kernel mitigation mechanisms, the 1175

existing techniques can be auxiliary. Especially when we begin 1176

to corrupt the target heap pointer of the Thanos object, we can 1177

use the techniques above to leak some kernel addresses first. 1178

IX. CONCLUSION 1179

In this paper, we proposed a versatile strategy that can 1180

transform weak exploit primitives into strong exploit primi- 1181

tives. Using a special object in the kernel called the Thanos 1182

object, our strategy can exploit a UAF that does not have 1183

function pointer dereference or an OOB write that just has 1184

limited write length and write value. We facilitate the strategy, 1185

we devised a tool TAODE to search for eligible Thanos objects 1186

from the kernel and pair them with appropriate vulnerabilities. 1187

We have successfully identified numerous Thanos objects 1188

from Linux, XNU, and FreeBSD. Using the identified Thanos 1189

objects, we have proved the feasibility of our approach with 1190

20 real-world kernel vulnerabilities, most of which traditional 1191

techniques fail to exploit. 1192

ACKNOWLEDGMENT 1193

The authors would like to sincerely thank all the reviewers 1194

for your time and expertise on this article. Your insightful 1195

comments help us improve this work. 1196

REFERENCES 1197

[1] K. Alspach. (2017). Major Attacks Using Log4J Vulnerability ’Lower 1198

Than Expected. [Online]. Available: https://venturebeat.com/2022/01/24/ 1199

major-attacks-using-log4j-vulnerability-lower-than-expected/ 1200

[2] Architecture Reference Manual, document ARMv7-A and ARMv7-R 1201

Edition, A. ARM, 2012. 1202

[3] W. Chen, X. Zou, G. Li, and Z. Qian, “Koobe: Towards facilitating 1203

exploit generation of kernel out-of-bounds write vulnerabilities,” in Proc. 1204

29th USENIX Secur. Symp. (USENIX Secur.), 2020, pp. 1093–1110. 1205

[4] Y. Chen, Z. Lin, and X. Xing, “A systematic study of elastic objects 1206

in kernel exploitation,” in Proc. ACM SIGSAC Conf. Comput. Commun. 1207

Secur., Oct. 2020, pp. 1165–1184. 1208

[5] Y. Chen and X. Xing, “SLAKE: Facilitating slab manipulation for 1209

exploiting vulnerabilities in the Linux kernel,” in Proc. ACM SIGSAC 1210

Conf. Comput. Commun. Secur., Nov. 2019, pp. 1707–1722. 1211

[6] H. Cho et al., “Exploiting uses of uninitialized stack variables in 1212

Linux kernels to leak kernel pointers,” in Proc. 14th USENIX Workshop 1213

Offensive Technol. (WOOT), 2020, p. 1. 1214

[7] K. Cook. (2017). Security Things in Linux v4.13. [Online]. Available: 1215

https://outflux.net/blog/archives/2017/09/05/security-things-in-linux-v4- 1216

13/ 1217

[8] J. Corbet. (2018). A Page-Table Isolation Update. [Online]. Available: 1218

https://lwn.net/Articles/752621/ 1219

[9] T. M. Corporation. (2021). Common Vulnerability and Exposures. 1220

[Online]. Available: https://cve.mitre.org/cve/ 1221

[10] C. Details. (2022). Linux: Vulnerability Statistics. [Online]. Available: 1222

https://www.cvedetails.com/vendor/33/Linux.html 1223

[11] Google. (2018). Syzbot: Google Continuously Fuzzing the Linux Kernel. 1224

[Online]. Available: https://syzkaller.appspot.com/upstream 1225

[12] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch 1226

side-channel attacks: Bypassing SMAP and kernel ASLR,” in Proc. ACM 1227

SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 368–379. 1228

[13] Y. Jang, S. Lee, and T. Kim, “Breaking kernel address space layout 1229

randomization with Intel TSX,” in Proc. ACM SIGSAC Conf. Comput. 1230

Commun. Secur., Oct. 2016, pp. 380–392. 1231

IE
EE P

ro
of

16 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

[14] M. Jurczyk and G. Coldwind. (2011). Smep: What is it, and How1232

to Beat it on Windows. [Online]. Available: https://j00ru.vexillium.org/1233

2011/06/smep-what-is-it-and-how-to-beat-it-on-windows/1234

[15] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “ret2dir:1235

Rethinking kernel isolation,” in Proc. 23rd USENIX Secur. Symp.1236

(USENIX Secur.), 2014, pp. 957–972.1237

[16] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “kGuard: Light-1238

weight kernel protection against return-to-user attacks,” in Proc. 21st1239

USENIX Secur. Symp. (USENIX Secur.), 2012, pp. 459–474.1240

[17] A. Konovalov. (2017). Exploiting the Linux Kernel Via Packet1241

Sockets. [Online]. Available: https://googleprojectzero.blogspot.1242

com/2017/05/exploiting-linux-kernel-via-packet.html1243

[18] Y. Lee, C. Min, and B. Lee, “Exprace: Exploiting kernel races through1244

raising interrupts,” in Proc. 30th USENIX Secur. Symp. (USENIX Secur.),1245

2021, pp. 2363–2380.1246

[19] Z. Lin et al., “GREBE: Unveiling exploitation potential for Linux1247

kernel bugs,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2022,1248

pp. 2078–2095.1249

[20] K. Lu and H. Hu, “Where does it go?: Refining indirect-call targets1250

with multi-layer type analysis,” in Proc. ACM SIGSAC Conf. Comput.1251

Commun. Secur., Nov. 2019, pp. 1867–1881.1252

[21] K. Lu, A. Pakki, and Q. Wu, “Detecting missing-check bugs1253

via semantic-and context-aware criticalness and constraints infer-1254

ences,” in Proc. 28th USENIX Secur. Symp. (USENIX Secur.), 2019,1255

pp. 1769–1786.1256

[22] K. Lu, M.-T. Walter, D. Pfaff, S. Nuernberger, W. Lee, and M. Backes,1257

“Unleashing use-before-initialization vulnerabilities in the Linux kernel1258

using targeted stack spraying,” in Proc. Netw. Distrib. Syst. Secur. Symp.,1259

2017, pp. 1–15.1260

[23] LWN. (2013). Kernel Address Space Layout Randomization. [Online].1261

Available: https://lwn.net/Articles/569635/1262

[24] A. Nguyen. (2021). CVE-2021–22555: Turning @00@00 into1263

10000$. [Online]. Available: https://google.github.io/security-research/1264

pocs/linux/cve-2021-22555/writeup.html1265

[25] PAX. (2013). Homepage of the PAX Team. [Online]. Available:1266

http://pax.grsecurity.net/1267

[26] B. Spengler. (2022). The Guaranteed end of Arbitrary Code Execution.1268

[Online]. Available: https://grsecurity.net/PaX-presentation.pdf1269

[27] Syzbot. (2017). Kasan: Use-After-Free Read in MPI_Free.1270

[Online]. Available: https://syzkaller.appspot.com/bug?id=1271

b0f0a3d34f0e9d551e1c0ab1fd911aaaa18bdcb91272

[28] Syzbot. (2018). Kasan: Slab-Out-of-Bounds Write in1273

Crypto_Dh_Encode_Key. [Online]. Available: https://syzkaller.appspot.1274

com/bug?id=a84d6ad70b281bfc5632f272f745104fb43d219d1275

[29] Syzbot. (2018). Kasan: Slab-Out-of-Bounds Write in Sha512_Final.1276

[Online]. Available: https://syzkaller.appspot.com/bug?id=1277

e4be30826c1b7777d69a9e3e20bc7b708ee8f82c1278

[30] Syzbot. (2018). Kasan: Use-After-Free Write in Dst_Release.1279

[Online]. Available: https://syzkaller.appspot.com/bug?1280

id=bf967d2c5ba62946c61152534c8b84823d848f051281

[31] Syzbot. (2020). Kasan: Slab-Out-of-Bounds Write in Hid-1282

dev_Ioctl_Usage. [Online]. Available: https://syzkaller.appspot.com/1283

bug?id=f2aebe90b8c56806b050a20b36f51ed6acabe8021284

[32] Syzbot. (2021). Kasan: Slab-Out-of-Bounds Write in Xfrm_Attr_Cpy32.1285

[Online]. Available: https://syzkaller.appspot.com/bug?id=1286

aaa35b314220404bbc2b1c66067b0f9a623baa891287

[33] Wikipedia. (2017). Wannacry Ransomware Attack. [Online]. Available:1288

https://en.wikipedia.org/wiki/WannaCry_ransomware_attack1289

[34] Wikipedia. (2021). Supervisor Mode Access Prevention. [Online]. Avail-1290

able: https://en.wikipedia.org/wiki/Supervisor_Mode_Access_Prevention1291

[35] Wikipedia. (2022). Executable Space Protection. [Online]. Available:1292

https://en.wikipedia.org/wiki/Executable_space_protection1293

[36] Wikipedia. (2022). Return-Oriented Programming. [Online]. Available:1294

https://en.wikipedia.org/wiki/Return-oriented_programming1295

[37] W. Wu, Y. Chen, X. Xing, and W. Zou, “Kepler: Facilitating control-flow1296

hijacking primitive evaluation for Linux kernel vulnerabilities,” in Proc.1297

28th USENIX Secur. Symp. (USENIX Secur.), vol. 2019, pp. 1187–1204.1298

[38] W. Wu, Y. Chen, J. Xu, X. Xing, X. Gong, and W. Zou, “Fuze: Towards1299

facilitating exploit generation for kernel use-after-free vulnerabilities,” in1300

Proc. 27th USENIX Secur. Symp. (USENIX Secur.), 2018, pp. 781–797.1301

[39] W. Xu et al., “From collision to exploitation: Unleashing use-after-free1302

vulnerabilities in Linux kernel,” in Proc. 22nd ACM SIGSAC Conf.1303

Comput. Commun. Secur., Oct. 2015, pp. 414–425.1304

[40] W. You et al., “SemFuzz: Semantics-based automatic generation of1305

proof-of-concept exploits,” in Proc. ACM SIGSAC Conf. Comput. Com-1306

mun. Secur., Oct. 2017, pp. 2139–2154.1307

[41] K. Zeng et al., “Playing for K(H)eaps: Understanding and improving 1308

Linux kernel exploit reliability,” in Proc. 31st USENIX Secur. Symp. 1309

(USENIX Secur.), 2022, pp. 71–88. 1310

[42] X. Zou, G. Li, W. Chen, H. Zhang, and Z. Qian, “SyzScope: Revealing 1311

high-risk security impacts of fuzzer-exposed bugs in Linux kernel,” 1312

2021, arXiv:2111.06002. 1313

Danjun Liu received the B.S. and M.S. degrees in computer science and 1314

technology from the National University of Defense Technology, Changsha, in 1315

2016 and 2018, respectively, where he is currently pursuing the Ph.D. degree 1316

in cyberspace security. His research interests include operating systems and 1317

software security. 1318

Pengfei Wang received the B.S., M.S., and Ph.D. degrees in computer science 1319

and technology from the College of Computer, National University of Defense 1320

Technology, Changsha, in 2011, 2013, and 2018, respectively. He is currently 1321

an Assistant Professor with the College of Computer, National University 1322

of Defense Technology. His research interests include operating systems and 1323

software testing. 1324

Xu Zhou received the B.S., M.S., and Ph.D. degrees from the School of Com- 1325

puter Science, National University of Defense Technology, China, in 2007, 1326

2009, and 2013, respectively. He is currently an Associate Professor with the 1327

School of Computer Science, National University of Defense Technology. His 1328

research interests include operating systems and security. 1329

Wei Xie received the Ph.D. degree in communication network security from 1330

the School of Electronic Science, National University of Defense Technology, 1331

China, in 2014. He is currently an Associate Professor with the College of 1332

Computer, National University of Defense Technology. His recent research 1333

interests include firmware vulnerability detection, web pentest, and AI-based 1334

security. 1335

Gen Zhang received the B.S., M.S., and Ph.D. degrees in computer science 1336

and technology from the College of Computer, National University of Defense 1337

Technology, Changsha, in 2016, 2018, and 2022, respectively. His research 1338

interests include fuzzing and software testing. 1339

Zhenhao Luo received the B.S. and M.S. degrees in cyberspace security from 1340

the National University of Defense Technology, Changsha, in 2016 and 2018, 1341

respectively, where he is currently pursuing the Ph.D. degree in cyberspace 1342

security. His current research interests include binary code similarity detection 1343

and vulnerability detection. 1344

Tai Yue received the B.S. degree from the Department of Mathematics, 1345

Nanjing University, Nanjing, in 2017, and the M.S. degree from the College 1346

of Computer, National University of Defense Technology, Changsha, in 2019, 1347

where he is currently pursuing the Ph.D. degree. His research interests include 1348

operating systems and software security. 1349

Baosheng Wang received the B.S., M.S., and Ph.D. degrees in computer 1350

science and technology from the National University of Defense Technology, 1351

China. He is currently a Professor with the School of Computer Science, 1352

National University of Defense Technology. His current research interests 1353

include internet architecture, high-performance computer networks, and net- 1354

work security. 1355

