
VulHawk: Cross-architecture Vulnerability Detection
with Entropy-based Binary Code Search

Zhenhao Luo, Pengfei Wang�, Baosheng Wang, Yong Tang, Wei Xie, Xu Zhou, Danjun Liu and Kai Lu
College of Computer, National University of Defense Technology

{zh.luo, pfwang, bswang, ytang, xiewei, zhouxu, liudanjun12, kailu}@nudt.edu.cn

Abstract—Code reuse is widespread in software development.
It brings a heavy spread of vulnerabilities, threatening software
security. Unfortunately, with the development and deployment
of the Internet of Things (IoT), the harms of code reuse are
magnified. Binary code search is a viable way to find these
hidden vulnerabilities. Facing IoT firmware images compiled
by different compilers with different optimization levels from
different architectures, the existing methods are hard to fit these
complex scenarios. In this paper, we propose a novel intermediate
representation function model, which is an architecture-agnostic
model for cross-architecture binary code search. It lifts binary
code into microcode and preserves the main semantics of binary
functions via complementing implicit operands and pruning
redundant instructions. Then, we use natural language processing
techniques and graph convolutional networks to generate function
embeddings. We call the combination of a compiler, architecture,
and optimization level as a file environment, and take a divide-
and-conquer strategy to divide a similarity calculation problem
of C2

N cross-file-environment scenarios into N − 1 embedding
transferring sub-problems. We propose an entropy-based adapter
to transfer function embeddings from different file environments
into the same file environment to alleviate the differences caused
by various file environments. To precisely identify vulnerable
functions, we propose a progressive search strategy to supplement
function embeddings with fine-grained features to reduce false
positives caused by patched functions. We implement a prototype
named VulHawk and conduct experiments under seven different
tasks to evaluate its performance and robustness. The experiments
show VulHawk outperforms Asm2Vec, Asteria, BinDiff, GMN,
PalmTree, SAFE, and Trex.

I. INTRODUCTION

Code reuse is widespread in software development. How-
ever, masses of codes and libraries are reused into multiple
architecture binaries without security audit, which leads to
many vulnerabilities hidden in software projects. Synopsys
audited 2,409 projects in 2021, reporting that 97% of projects
contained third-party code, and 81% of them contained known
vulnerabilities [49]. A single vulnerability in the open-source
code may spread across thousands of software, exposing
millions of people to serious software security threats.

Unfortunately, with the development and deployment of
the Internet of Things (IoT), the harms of code reuse are
magnified. IoT devices are widely used in various scenarios.
For different usage requirements, these IoT firmware images

from different instruction set architectures (ISAs) are gener-
ated by different compilers with different optimization levels.
However, numerous IoT firmware images only provide binary
files, which have no source code available for security analysis.
Their symbol information, such as function names, is generally
stripped. Thus, binary code search becomes an active research
focus for seeking vulnerabilities hidden in IoT devices.

Binary code search is applied to find similar or homologous
binary functions in a large function repository. It is widely used
in vulnerability detection [5]–[7], [16], [29], [41], [43], [48],
[58]. For example, given a binary file, the binary code search
compares its functions with all functions in the vulnerability
repository based on function similarity to seek vulnerable
functions in the binary file. In addition, it is also used in
malware analysis [2], [4], [13], [18], [20] and binary patch
analysis [19], [22], [56]. Since IoT firmware images come
from different compilers, optimization levels, and ISAs, this
brings tough challenges to binary code search, which requires
high robustness for search approaches.

P1: Seeking vulnerabilities in IoT firmware requires bi-
nary code search methods robust across ISAs. In the mono-
architecture binary code search, Asm2Vec [10], DeepBinDiff
[11], and PalmTree [27] using natural language processing
(NLP) techniques have achieved encouraging results. However,
they can only search binary code on the same ISA and do not
support cross-architecture tasks. InnerEye [60] treats binaries
from different ISAs as different natural languages and uses
neural machine translation to calculate binary code similarity.
SAFE [35] trains its language model using binaries from
multiple ISAs to search binary code across architectures. These
rely heavily on training data and are difficult to implement
for multiple ISAs. Lifting architecture-specific binary code to
an architecture-agnostic intermediate representation (IR) is an
effective way to address the cross-architecture challenge in IoT
firmware. However, natural language and IR have essential dif-
ferences [42]. Unlike natural language, IR contains EFLAGS as
implicit operands (e.g., ZF). These flags control the function’s
execution paths and have important implications for function
semantics. In addition, many redundant instructions in IR
reduce the main semantics’ weights, impacting the extraction
precision of the main semantics.

P2: IoT firmware images are compiled by different compil-
ers with various optimization levels due to usage requirements.
Binaries from the same source code compiled by different
compilers with optimization levels have similar semantics but
different structures, which brings great challenges to binary
code search. In this paper, we consider 3 architectures (x86,
arm, and mips), 2 word sizes (32-bit and 64-bit),

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA
ISBN 1-891562-83-5
https://dx.doi.org/10.14722/ndss.2023.24415
www.ndss-symposium.org

2 compilers (Clang and GCC), and 6 optimization levels
(O0, O1, O2, O3, Os, and Ofast), totaling 72 combina-
tions (3 × 2 × 2 × 6). If binaries are selected from any
two above combinations, there are a total of 2,556 (C2

72)
combined scenarios. The existing methods [9], [10], [27], [41]
pin their hopes on deep learning to alleviate these differences
and build a robust model against these scenarios. It may be
possible to build a robust model for one or several specific
scenarios. However, building a robust model against these
2,556 scenarios is complicated. Also, no information directly
indicates compilers and optimization levels in binary files.

To solve the aforementioned problems, in this paper, we
propose a novel cross-architecture binary code search ap-
proach named VulHawk. It contains a novel intermediate
representation function model (IRFM) to generate robust func-
tion embeddings. In the IRFM, we first lift binary code to
microcode. Then, we treat microcode sequences as language
and use a variant of the RoBERTa model [31] to build basic
block embeddings. We adopt graph convolutional networks
(GCNs) to integrate basic block embeddings and control flow
graphs (CFGs) to generate function embeddings. For the cross-
architecture challenge in P1, the microcode is an architecture-
agnostic language, which allows our model to be trained from
one ISA and to search functions in multiple ISAs. For redun-
dant instructions and implicit operands in P1, we implement
an instruction simplification in the IRFM. We consider the
assignments to implicit operands (EFLAGS) as real assignment
instructions, which can help IRFM complement the implicit
operand semantics. For redundant instructions, the instruction
simplification simplifies microcode based on def-use relations,
which prunes redundant instructions and preserves the main
semantics of binary functions. This helps IRFM extract func-
tion semantics more precisely. We also propose root operand
prediction (ROP) and adjacent block prediction (ABP) pre-
training tasks to help the model understand relations between
operands and data-flow relations between basic blocks.

For the challenges in P2, we take a divide-and-conquer
strategy to divide the similarity calculation problem with
2,556 scenarios into 71 embedding transferring issues. We
refer to the combination of the compiler, architecture, and
optimization level as a file environment. Faced with 72 file
environments, we choose an intermediate file environment, and
transfer function embeddings from different file environments
into the same file environments to alleviate differences. First,
we introduce Shannon’s entropy [47] from an information-
theoretic perspective to represent the amount of information
in binary files. In our practice, we find that binary files from
the same file environments have similar entropy distributions.
So we use entropy streams to identify file environments. With
knowledge about functions’ file environment, we deploy an
entropy-based adapter to transfer these function embeddings
into the intermediate file environment to alleviate differences
caused by different environments. Furthermore, we propose
a progressive search strategy to search candidate functions
for keeping retrieval high efficiency and precision. First, it
uses function embeddings to retrieve top-K function candidates
based on the Euclidean distance. Then, we propose a similarity
calibration method, which supplements the function embed-
dings using fine-grained features to reduce false positives.

In summary, we have made the following contributions:

• We propose an IRFM to generate robust function embed-
dings across architectures. It lifts binary code into microcode
and preserves the main semantics of binary functions via
instruction simplification. Two pre-training tasks are pro-
posed to help our model to learn the root semantics of
operands and grasp block data-flow relations. We use GCNs
to integrate basic block embeddings based on CFGs to
generate function embeddings. The IRFM can work across
different architectures, which resolves the problem P1.
• According to the divide-and-conquer strategy, we use en-

tropy streams to identify the file environments of binary files
from the information-theoretic perspective. We propose an
entropy-based adapter to transfer function embeddings into
the same file environment to alleviate differences caused by
different file environments. This makes our model robust
against different compilers and optimization levels, resolv-
ing the problem P2.
• We propose a progressive search strategy, which imple-

ments a similarity calibration using fine-grained features to
boost the performance and reduce false positives caused by
patched functions.
• We implement VulHawk and evaluate it in three different

scenarios: one-to-one comparison, one-to-many search, and
many-to-many matching, across compilers, optimization lev-
els, and architectures. The experiments show that VulHawk
outperforms the state-of-the-art methods.
• We release the program and the pre-trained model of Vul-

Hawk (https://github.com/RazorMegrez/VulHawk) to facili-
tate the follow-up research.

II. BACKGROUND

A. Problem Definition

Cross-architecture binary code search aims to retrieve top-
K semantically similar candidate functions for massive binary
functions extracted from various IoT devices [55]. Inspired
by existing work [10], [55], [57], we define that two binary
functions are semantically similar if they are compiled from the
same or logic-similar source code. Like binary code similarity
detection, the core of binary code search is the design of a
robust model to detect whether given functions are similar.
Instead of one-to-one matching, binary code search considers
one-to-many search, which requires methods to retrieve seman-
tically similar candidates more quickly and accurately. In the
real world, IoT firmware can be compiled by various compilers
(e.g., GCC and Clang) with different optimization levels (e.g.,
O0-O3, Os, and Ofast), which leads to compiled binary
functions with the same semantics but different structures.
Therefore, an effective cross-architecture binary code search
needs to achieve the following goals:

• Cross-architecture support. Since IoT devices may come
from different architectures, it requires methods to be robust
against the differences introduced by different architectures.

• Cross-compiler support. Due to different development envi-
ronments, compilers and compiler versions are usually dif-
ferent. It requires methods to tolerate the syntactic variations
introduced by different compiler back-ends.

• Cross-optimization support. In the real world, the same
source code may be compiled with different optimization
levels due to various requirements (e.g., faster or more

2

 https://github.com/RazorMegrez/VulHawk

Box 1. 𝑝1 =
5

5
𝐻 = 0

Box 2. 𝑝1 =
3

5
, 𝑝2 =

2

5
𝐻 = 0.97

Box 3. 𝑝1 =
3

5
, 𝑝2 =

1

5

, 𝐻 = 1.37

Fig. 1. Examples of Shannon’s entropy calculation.

refined). It requires methods to be robust against the control
flow structure change by different optimization levels.

• High precision and efficiency. Binary code search should
accurately retrieve the most similar functions from millions
of functions and distinguish irrelevant ones. For a large
function database, it requires binary code search methods
to search similar functions more quickly.

B. Entropy theory

In the information-theoretic perspective, Shannon’s entropy
[47] is a classic information measurement. It measures the
randomness and the average amount of information in a
system. The entropy function is as follows:

H =

∫
S
−p(x) log2 p(x) dx (1)

where S is the set of elements, and p(x) represents the
probability of element x. Fig. 1 illustrates examples of Shan-
non’s entropy calculation. Each pattern represents a different
element. For example, Box 1 is full of circles whose entropy
H is 0; Box 2 has circles and triangles, which is more complex
than Box 1, and its entropy is higher than Box 1; Box 3
is the most complex system of the three, whose entropy H
is the highest. Through entropy analysis, we can get an up-
front understanding of the average amount of information in a
system before we drill down into it. In the binary code search
task, we get the information distribution of binary files through
the binary file entropy, which can infer information such as
their compilers and optimization levels. This helps our model
choose suitable parameters for different input binaries.

III. DESIGN

In this section, we describe VulHawk’s design. It contains
three components: an intermediate representation function
model, an entropy-based adapter, and a progressive search
strategy. Fig. 2 shows the overview of VulHawk.

The IRFM is to generate basic block embeddings and
function embeddings. We first lift binary code to microcode.
Then, the instruction simplification complements the implicit
operand semantics and prunes redundant instructions, which
can preserve the main semantics of functions and improve the
robustness of the IRFM. After that, we use a language model
based on RoBERTa [31] to build basic block embeddings.
During model training, we propose root operand prediction
and adjacent block prediction pre-training tasks to let the
IRFM understand relations between operands and data-flow
relations between basic blocks. Finally, we adopt GCNs to
aggregate neighbor basic block embeddings to capture control-
flow relations to generate function embeddings.

The entropy-based adapter identifies file environments of
input binary files and takes a divide-and-conquer strategy to
make function embeddings from different file environments

TABLE I. MICROCODE CATEGORY

Microcode # of types Type list

opcode 73

nop, stx, ldx, ldc, mov, neg, lnot, bnot, xds, xdu,
low, high, add, sub, mul, udiv, sdiv, umod, or,
and, xor, smod, shl, shr, sar, cfadd, ofadd, cfshl,
cfshr, sets, seto, setp, setnz, setz, setae, setb,
seta, setbe, setg, setge, setl, setle, jcnd, jnz, jz,
jae, jb, ja, jbe, jg, jge, jl, jle, jtbl, ijmp, goto, call,
icall, ret, push, pop, und, ext, f2i, f2u, i2f, u2f,
f2f, fneg, fadd, fsub, fmul, fdiv.

operand 16
mop z, mop r, mop n, mop str, mop d,
mop S, mop v, mop b, mop f, mop l, mop a,
mop h, mop c, mop fn, mop p, mop sc

more similar. Here, we introduce entropy from an information-
theoretic perspective. We first use entropy to predict the file
environments, and then use the entropy-based adapter to trans-
fer function embeddings into the intermediate file environment
according to their file environments to mitigate the differences
introduced by file environments.

The progressive search strategy is used to precisely detect
candidates for function queries. We propose a two-step strat-
egy, including coarse-grained search and similarity calibration.
With the help of similarity calibration, we filter false positives
(e.g., patched functions) when detecting vulnerable functions,
which makes our model more precise.

A. Intermediate Representation Function Model

To resolve the cross-architecture challenge, we lift binary
code into IR and propose an Intermediate Representation
Function Model (IRFM) using RoBERTa model [31] to build
IR embeddings. The IRFM embeds IR functions into high-
dimensional embedding space, which makes embeddings of
semantically similar functions close in the numerical space.

1) Intermediate Representation: For binaries from various
architectures, we disassemble them and lift binary code to
an architecture-agnostic IR. We use IDA Pro [45] and its
IR, named microcode, in our implementation, but other dis-
assemblers and IRs also work (e.g., McSema [40]). As Table I
shows, the microcode groups categorize various instructions
from different architectures into 73 opcodes and 16 types
of operands. For example, mop_z represents none operands,
mop_r represents registers, and mop_str represents string
constants1. Microcode, a well-established IR, can mitigate the
impacts of instruction type differences on the cross-architecture
binary code search.

Tokenization. In microcode, an instruction consists of one
opcode and one operand triplet which includes left, right, and
destination operands. Unlike PalmTree [27] which splits an
instruction into fine-grained basic elements (e.g., “mov”, “[”,
“+” and “qword”), we split an instruction into one opcode
and three operands (i.e., left, right and dest) based
on the characteristics of microcode. The base address and
offsets are different in different binaries, which introduce
noises and make the model less robust. We normalize these
addresses (e.g, 0x4040E0 and 0x4150D0) with a special
token [addr]. To alleviate the OOV (Out-Of-Vocabulary)
problem, we introduce 16 root-operand tokens according to

1More details can be found at https://www.hex-rays.com/products/
decompiler/manual/sdk/hexrays 8hpp source.shtml

3

https://www.hex-rays.com/products/decompiler/manual/sdk/hexrays_8hpp_source.shtml
https://www.hex-rays.com/products/decompiler/manual/sdk/hexrays_8hpp_source.shtml

Intermediate Representation Function Model

Neighbor Aggregation Graph Pooling

𝐸2

𝐸𝑛

𝐸1

… … … 𝑇2

𝑇𝑛

𝑇1

…

Trm

Trm

Trm

Trm

Trm

Trm

Binaries

Instruction

Simplification

Language Model
Microcode

Generation

0101010101

0101010101

Binary

Code

Entropy

GCN layer …

…

String Features

Imported Functions

"failed to restore working directory after searching %s"

.gettext .strlen .error .memcpy

"failed to read file names from file system at or below %s"

.exit

…

Entropy Features

ResNet ResNet +

Top-K Candidates

Prediction

Basic Block Features

Function Summary Features

Entropy-based Adapter

Progressive

Search Strategy

Fig. 2. The overall workflow of VulHawk.

microcode operand types in Table I. For operands in the
vocabulary, we use their own tokens, and for those OOV
operands, we use root-operand tokens to represent their basic
semantics. In the pre-training phases, we replace tokens, whose
frequency is less than 100 times, with their root-operand tokens
to build root-operand token embeddings.

2) Language Model: The IRFM is based on RoBERTa
[31], the state-of-the-art and widely used NLP model. The
model uses a multi-layer bidirectional transformer encoder to
build embeddings. Due to these essential differences between
microcode and natural language, we make the following nec-
essary improvements for the IR language model.

Token Type Layer. Unlike natural language, microcode
consists of opcodes and operands, not just single words. Op-
codes represent the operations to be performed (e.g., ldx and
goto), and the operands indicate the data or memory location
used for the operations. Considering these differences, we use
a token type layer to help IRFM distinguish between opcodes
and operands. We divide tokens into three types: opcode,
operand, and others. The others type includes special
tokens (e.g., [pad]) with no actual semantics.

Instruction Simplification. Binary code contains EFLAGS
(i.e., flag registers) as implicit operands. These EFLAGS are
implicitly assigned by instructions and used as inputs to
conditional jumps. They control function execution paths and
have important implications for function semantics. Unfortu-
nately, most static BCSD approaches ignore these EFLAGS
[10], [11], [41], [53], [59], [60]. Although PalmTree [27]
mentions EFLAGS, it does not handle EFLAGS in terms of the
instruction sequences. Dynamic binary analysis approaches,
e.g., VEX [39], to emulate the real program behaviors, have to
consider all EFLAGS. In static BCSD approaches, important
semantics will be lost if EFLAGS are not considered; when
all EFLAGS are considered, redundant EFLAGS not only
introduce extra overhead, but may obscure the main semantics
of binary code. Therefore, we only consider the used EFLAGS.
We convert the assignment of each instruction to implicit
operands into a real assignment instruction via microcode (e.g.,
Ln.12 in Fig. 3(a)), and preserve their used EFLAGS into
instruction sequences.

Fig. 3(a) shows a microcode sequence, including global
variables, return values, arguments to subfunctions, and re-
dundant instructions. Redundant instructions (e.g., Ln.12-15 in
Fig. 3(a)) bring extra overheads to handle and reduce the
weights of the function’s main semantics, impacting the em-

Not to be removed

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

varC = sub_1253(var14);
var14 = eax + var14;
if (byte4011){

byte4011 = 0;
}
return var14

……
mov
mov
call
mov
mov
mov
add
sets
setp
setz
xdu
mov
mov
sets
setp
setz
jcnd
mov
xdu
ret

eax
edi

%varC
eax
eax
%var14
sf
pf
zf
rax
cf
of
sf
pf
zf
$Block3
$byte4011
rax

%var14
eax
sub_1253
eax
#0xBEEF
%varC
eax
%var14
%var14
%var14
$byte4011
#0
#0
rax
rax
rax
zf
#0
%var14

%var14

#0
#0

#0
#0

Block2:

Block1:

Block3:

To be removed

……
mov
mov
call
mov
mov
add
xdu
setz
jcnd
mov
xdu
ret

eax
edi

%varC
eax
%var14
rax
zf
$block3
$byte4011
rax

%var14
eax
sub_1253
eax
%varC
eax
$byte4011
rax
zf
#0
%var14

%var14

#0

To be optimized

Instruction ID Reasons

2 Arguments to subfunctions

5 Unused registers

8-10, 12-15 Unused EFLAGS

18 Global variables

19 Return values

1
2
3
4
5
6
7
8
9

10
11
12

……
mov
call
mov
add
setz
jcnd
mov
xdu
ret

edi

%varC
%var14
zf
$block3
$byte4011
rax

%var14
sub_1253
eax
eax
$byte4011
zf
#0
%var14

%var14
#0

1
2
3
4
5
6
7
8
9

Not to be optimized

Instruction ID Reasons

4 Local variables

1-2, 5-8 Value passing

// Psuedocode

(a) (b)

(c)

Fig. 3. Detailed steps of the instruction simplification.

bedding generation performance. When pruning redundant
instructions, we prevent deleting global variables, arguments
to subfunctions, and return values, because these instructions
represent function behaviors and include essential semantics.

Here, we propose an instruction simplification based on
def-use relations to prune redundant instructions and preserve
important semantics. First, we mark the following “important”
instructions to avoid deletion: (1) Global variables and local
variables are stored in memory instead of registers, so we
mark assignment instructions whose destination operand is a
memory address, e.g., Ln.18 in Fig. 3(a). (2) Return values
are usually stored in the specific registers, e.g., rax (x86)
and x0-x1 (arm). Thus, we mark specific registers based on
calling conventions near the return instruction on all paths, e.g.,
Ln.19 in Fig. 3(a). (3) The arguments to subfunctions appear
before the function call, and they are not overwritten by other
instructions before being passed into the subfunction, e.g., Ln.2
in Fig. 3(a). We use loose rules to “important” instructions
to ensure that no main semantics are mistakenly deleted. We
consider instructions whose defined registers or EFLAGS are
not used in subsequent instructions as unused instructions
(e.g., Ln. 5, 12-15 in Fig. 3(a)) and prune them. After pruning
unused instructions, we optimize redundant instructions (e.g.,
Ln. 5-8 in Fig. 3). We focus on the instructions that define
a register directly assigned to another variable, named value
passing instructions. Through instruction simplification, the 20
instructions of Fig. 3(a) are simplified to 9 instructions, which
preserves the main semantics of Fig. 3(a) and is similar to its
pseudocode. This helps IRFM extract more precise function
semantics. In practice, the RoBERTa model accepts limited
input length, and the instruction simplification enables the
input of RoBERTa to preserve more valid instructions.

4

3) Pre-training Tasks: In the training phase, we use
Masked Language Model (MLM), Root Operand Prediction
(ROP), and Adjacent Block Prediction (ABP) for pre-training.

Masked Language Model. We introduce an MLM model
to understand relationships between microcode and build
suitable word embeddings. The MLM is first introduced by
BERT [8], which uses the context tokens surrounding a mask
token to predict what the masked token to optimize model
parameters. In the mask layer of MLM, it randomly selects
15% of tokens to replace. For selected tokens, 80% of them
are replaced by [mask] token, 10% are replaced with their
root-operand tokens (the opcode root is itself), and 10% are
unchanged. Fig. 4 shows an example, where yellow, red, and
green boxes represent masked tokens, replaced tokens, and
predicted results, respectively. In Fig. 4, opcode setz and
register r0 are masked as [mask], and immediate number
constant #0 is replaced with its root-operand token mop_n.

…Input

Prediction

[cls] #0 zf jz ret [sep][mask]

setz r0

[mask]

#0

r0 mop_n

Fig. 4. Masked Language Model (MLM)

During training, we feed the final hidden states correspond-
ing to the masked/replaced tokens into an output softmax over
the vocabulary to predict the probability of these tokens. The
loss function of MLM uses the Cross-Entropy loss as follows:

LMLM (θ1, θ2) = −
∑
i∈M

log p(yi = ŷi|θ1, θ2), ŷi ∈ {1, 2, ..., |V |}

(2)
where y is the ground truth, ŷ is the prediction, |V | is the size
of vocabulary, and M denotes the masked token set. θ1 and θ2
are the parameters of the IRFM and MLM head, respectively.

Root Operand Prediction. We propose the ROP pre-
training task to associate token semantics with their root token
semantics, which makes our model generate more reliable root
token semantics for OOV words. In microcode, operands are
divided into 16 types (see Table I). We use these as root-
operand tokens. It is friendly to OOV operands because we
can convert OOV operands into their root-operand tokens to
represent their root semantics. For example, a specific address
0xdeadbeef, assuming that is an OOV operand, our model
assigns it with the semantics of root token mop_a which
represents address operands, while the traditional model cannot
distinguish its semantics [10], [35]. Since the opcode-root
tokens are themselves, the ROP task will not predict the root
opcode tokens. We perform an ROP head to predict their root
tokens. In the training phase, we feed the final hidden states of
tokens into a linear transformation. We use an output softmax
over the operand types to predict the probability of these root-
operand tokens. The loss function of ROP uses the Cross-
Entropy loss as follows:

LROP (θ1, θ3) = −
∑
i∈S

log p(yi = ŷi|θ1, θ3), ŷi ∈ {1, 2, ..., |VR|}

(3)
where |VR| is the size of root-operand vocabulary, and S
denotes the operand token set. θ1 and θ3 are the parameters of
the IRFM and ROP head, respectively.

Adjacent Block Prediction. In binary functions, there
are data-flow relations between basic blocks. Unlike natural
language, variables in binary code are required to be defined
before being used. The basic blocks with data-flow relations
are order-sensitive, which is not directly captured by the
IRFM. To train a model that understands data-flow relations
between adjacent blocks, we propose an ABP pre-training
task. Specifically, given two basic blocks A and B, where B
is a successor of A, variable x is defined in block A, and
variable x is used in block B. We label the order of A-B as
positive and the order of B-A as negative. Note that A
and B are not the same blocks, and A is not the successor
of B. Also, we do not consider these cases that A and B
have only control-flow relations without data-flow relations.
Because if there is no support of data-flow relations, the reverse
order of blocks may also occur. We feed the final hidden state
of token [cls] in the IRFM into the ABP head, a linear
transformation, to identify whether the input two microcode
sequences are in positive order. The loss function of ABP uses
the Cross-Entropy loss as follows:

LABP (θ1, θ4) = −
∑
i∈D

log p(yi = ŷi|θ1, θ4) (4)

where y is the order label (positive or negative), ŷ is
the prediction, and D denotes the training set. θ1 and θ4 are
the parameters of the IRFM and ABP head, respectively.

The total loss function of the language model is the
combination of the above three loss functions:

LLM = LMLM + LROP + LABP (5)

4) Function Embedding Generation: The task of IRFM in
VulHawk is to generate function embeddings. First, we gener-
ate basic block embeddings. For input microcode blocks, the
IRFM transformer encoders output sequences of hidden states.
Here, we apply a mean pooling layer to integrate microcode
instruction embeddings. According to the pre-trained model
results [54], the last layer’s hidden states are too close to the
target tasks (e.g., MLM) during pre-training, which may be
biased to these pre-training tasks. The hidden states of the
second-last layer provide more generalization than those of the
last layer. Therefore, we use mean pooling on the hidden states
of the second-last layer to generate basic block embeddings.

The existing studies [34], [55] already showed that solu-
tions based on CFGs have advantages in cross-architecture
scenarios. Here, we integrate basic block embeddings and
CFGs to generate function embeddings. Considering the multi-
branch structure of binary functions, we use GCNs [24] to
capture CFG structures and aggregate basic block semantics
to their neighbor basic blocks. We consider binary functions
as attributed graphs, where their basic blocks are nodes in
the graphs, and their embeddings are attributes of nodes. We
feed the attributed control flow graphs (ACFGs) into the GCN
layer. X(l) represents features of the l-th layer nodes, and the
aggregation function is as follows:

Ã = A+ IN , D̃ii =
∑

Ãij

X(l+1) = ReLU(D̃−
1
2 ÃD̃−

1
2X(l)W (l))

(6)

Here, Ã is the adjacency matrix with self-connections. IN

5

Intermediate

file environment V

File environment 1

File environment 2

File environment 𝑛

…

Training

Adapter

Adapter

Adapter

Classification

D
iv

id
e-

an
d

-c
o

n
q
u

er
 s

tr
at

eg
y

Traditional

Methods

Embedding Space Mixed file environment

divide

Problem with 2,556 scenarios

71 sub-problems

Intermediate file environment

Real file environment

Fig. 5. The diagram of divide-and-conquer strategy.

is an identity matrix. D̃ii is a degree matrix of the node,
and W (l) is a layer-specific trainable weight matrix. ReLU
denotes an activation function. After an aggregation layer, the
blocks learn contextual semantics from their adjacent blocks.
To comprehensively learn block semantics and structures of
CFGs, we adopt a 16-layer GCN to aggregate neighbor se-
mantic embeddings. Finally, we use a mean pooling on the
output of the GCN layer to generate function embeddings.

Training. Given two binary functions, we generate the
ground truth y, i.e., dissimilar (0) and similar (1), based on
function names and source files. We use Euclidean distance to
calculate the similarity s of two functions as follows:

s =
1

1 + Distance(X1, X2)
(7)

The training objective is to make the similarity of similar
functions approach 1, and the similarity of dissimilar functions
approach 0. We use the Cross-Entropy loss as the loss function:

LFunction = −
N∑
i=0

N∑
j=0

(yij log(sij) + (1− yij) log(1− sij))

(8)
where y is the ground truth, sij is the similarity of functions
i and j. We use the Adam optimizer to optimize the GCN’s
parameters to minimize the loss LFunction.

B. Entropy-based Adapter

In the real world, binary functions are compiled by multiple
compilers with different optimization levels from various archi-
tectures. In this paper, we call the combinations of compilers,
architectures, and optimization levels as file environments.
Functions from different file environments, even from the same
source code, may differ in instructions and structures.

Divide-and-conquer. Fig. 5 shows an example of matching
similar functions in the embedding space. Given an embedding
space, points with the same color indicate similar functions and
their variants. Existing methods [10], [14], [27], [55] do not
distinguish the file environments of functions, and build one
model to generate embeddings for binary functions in a mixed

file environment. Embeddings of different functions have good
discrimination in the same file environment, but mixed file
environments may cause embedding collisions, which greatly
increases the complexity of binary code similarity search.
Furthermore, the differences between file environments are
different. For example, the differences between O0 and O3
optimizations and the differences between GCC and Clang
compilers are different. Building a single model with high
robustness against all file environments is difficult.

In response to this challenge, we propose a novel divide-
and-conquer strategy. First, we split the embedding space
of the mixed file environment into multiple embedding sub-
spaces. Second, we choose one of the file environments V
as the intermediate file environment, and divide the function
similarity problem among N file environments with C2

N sce-
narios into N − 1 sub-problems of function embedding trans-
ferring. Finally, we use trained adapters to transfer function
embeddings from different file environments into the same file
environment V for similarity calculation, which can alleviate
the differences caused by different file environments. With the
help of the divide-and-conquer strategy, our model generates
robust function embeddings against different file environments.

As shown in Fig. 5, a similarity calculation problem with
2,556 scenarios is divided into 71 sub-problems, significantly
reducing the problem’s complexity. The distribution of func-
tion embeddings is different in different file environments.
The adapters transfer function embeddings into the same file
environment and keep similar functions clustered together. In
this way, the function similarity can be quickly determined
based on the distance in the embedding space. In this paper,
we consider 3 architectures including x86, arm and mips,
2 word sizes including 32-bit and 64-bit, 2 compilers
including Clang and GCC, and 6 optimization levels including
O0, O1, O2, O3, Os and Ofast, which are a total of 72 file
environments (3 × 2 × 2 × 6). In binary code search, it is
required that the embeddings of similar functions from any
two file environments mentioned should be close, which is
a complex problem with 2,556 scenarios (C2

72). Our divide-
and-conquer strategy turns this problem with 2,556 scenarios
into 71 embedding-transferring problems. Considering that the
number of O1 is in the middle of all optimization levels,
We select the O1-GCC-x86-64 file environment as the
intermediate file environment. Note that it can also choose
other file environments as the intermediate file environment.

1) Entropy-based Binary Analysis: For the divide-and-
conquer strategy, an important step is to identify the file
environments. Architectures and word sizes of binary functions
can be identified via their instructions. However, the problem
is there is no information to directly indicate compilers and
optimization levels in binary files.

To resolve this problem, we take an information-theoretic
perspective to understand binaries and introduce entropy to
identify compilers and optimization levels of binary files.
Generally, code segments that have been compressed or en-
crypted tend to have higher entropy than native code [33].
This also can be applied in distinguishing different compilers
and optimizations.

From the information-theoretic perspective, two binary
code fragments, compiled by the same source code with O0
and O3 optimization levels respectively, carry the same code

6

0x00 0x40 0x80 0xC0 0xFF
Byte

0.01

0.30
En

tro
py

(a) libcurl

0x00 0x40 0x80 0xC0 0xFF
Byte

0.01

0.30

En
tro

py

(b) find

0x00 0x40 0x80 0xC0 0xFF
Byte

0.01

0.30

En
tro

py

(c) mtools

0x00 0x40 0x80 0xC0 0xFF
Byte

0.01

0.30

En
tro

py

(d) psftp

0x00 0x40 0x80 0xC0 0xFF
Byte

0.01

0.30

En
tro

py

(e) libcurl

0x00 0x40 0x80 0xC0 0xFF
Byte

0.01

0.30
En

tro
py

(f) find

0x00 0x40 0x80 0xC0 0xFF
Byte

0.01

0.30

En
tro

py

(g) mtools

0x00 0x40 0x80 0xC0 0xFF
Byte

0.01

0.30

En
tro

py

(h) psftp

0x00 0x40 0x80 0xC0 0xFF
Byte

0.01

0.30

En
tro

py

(i) libcurl

0x00 0x40 0x80 0xC0 0xFF
Byte

0.01

0.30

En
tro

py

(j) find

0x00 0x40 0x80 0xC0 0xFF
Byte

0.01

0.30

En
tro

py

(k) mtools

0x00 0x40 0x80 0xC0 0xFF
Byte

0.01

0.30

En
tro

py

(l) psftp

Fig. 6. Entropy streams of binary files. The samples in the first, second, and
third rows are from different file environments O0-Clang-x86-64, O1-GCC-
arm-64, and O3-Clang-x86-64, respectively. Note the variation of the entropy
streams between the file environments.

WeightBatchNorm WeightBatchNorm𝒙𝑙
ReLU ReLU

+ 𝒙𝑙+1
𝑓(𝒙𝑙 ,V)

Fig. 7. The layer of ResNet

semantics. However, due to compiler optimization, the binary
code fragment with O3 is usually more refined than those with
O0. Thus, the entropy of the binary code fragment with O3
is different from those with O0. Fig. 6 displays the entropy
streams from 12 different binaries from 3 file environments.
The entropy stream of a binary file is computed by splitting
its raw bytes into hexadecimal representation (0x00–0xFF).
It can be observed that the entropy streams from the same file
environments appear to be similar while distinct from those
belonging to different file environments. Using entropy streams
and the theory of entropy, we can identify different compilers
and optimizations.

To prevent collision problems that single entropy streams
might cause, we use the following features:

• The entropy stream of the .text segment, which are 256
respective probabilities of raw bytes (0x00-0xFF).

• The .text segment entropy which is the integral of the
entropy stream over the .text section. This focuses on
the executable part in binaries and avoids the impact of data
segment changes.

• The file entropy is the integral of the entropy stream over
the entire file, providing global information at the file level.

We use a Residual Neural Network (ResNet) [50] as
the classifier, and the aforementioned features as inputs for
identifying file environments. Fig. 7 shows the structure of the
basic residual block. It consists of batch normalization and
the linear transformation, and the activation function is ReLU.
A skip connection using identity mapping from the input is
added to the basic residual block output, which preserves the
function semantics and helps tackle the vanishing gradient
problem [50]. We sample inputs using a convolutional layer
which converts the 258-dimension inputs into 64-dimension
features. After 16 layers of residual basic blocks, we use linear
prediction and a softmax function to do multi-class classifica-

tion. Since Os and Ofast are incremental optimizations on
O2 and O3, respectively, we include Os and Ofast into O2
and O3, respectively. Here, the softmax objective is 8 classes
(2 compilers × 4 optimizations). The entropy analysis helps us
identify file environments (compilers and optimization levels)
in preparation for subsequent function embedding transferring.

2) Entropy-based Adapter layer: To calculate the simi-
larity of binary functions from different file environments,
we propose an entropy-based adapter layer after the IRFM.
The entropy-based adapter layer acts as a mapping F to
transfer function embeddings from different file environments
into the same intermediate file environment V to alleviate the
differences caused by different file environments. The mapping
F should both preserve the function semantics and alleviate
deviations due to the different file environments.

Given two function embeddings x and x′ from the source
code but different file environments V and V ′, we rewrite x as
x′ − α where α represents the bias between x and x′. Their
similarity s is written as s = 1

1+|(x′−α)−x′|2 . When the bias α
tends to 0, the similarity s tends to 1. So, the mapping F is
a combination of the function embedding itself and the bias,
where we fit the bias with f(x,V). We use ResNets [50] to
construct the mapping F . The adapter weights are different
according to the input file environment V .

Training. To reduce the training complexity, we freeze
the parameters of IRFM. We use the function similarity as
the ground truth, i.e., dissimilar (0) and similar (1). The
training objective is to make the similarity of similar functions
approach 1, and the similarity of dissimilar functions approach
0. We use the Cross-Entropy loss as the loss function:

L = −
N∑
i=0

N∑
j=0

(yij log(sij) + (1− yij) log(1− sij)) (9)

where y is the ground truth, sij is the similarity of functions i
and j. We use the Adam optimizer to optimize parameters
to minimize the loss L. It is worth noting that when new
compilers and optimization levels are introduced, we only
need to train the corresponding mappings for the new file
environments, which makes our approach more practical.

C. Progressive Search Strategy

Existing methods [10], [27], [35] use function embeddings
to search for similar functions. This is a coarse-grained de-
tection approach lacking fine-grained information (e.g., block-
level features), which achieves low search overheads but leads
to high false positives, especially for minor-change patched
functions. While Marcelli et al. [34] using Graph Matching
Networks [28] and other methods [58], [60] using Siamese
network [3] to calculate the similarity of each function pair at
the fine-grained level, which may achieve high performance
but are computationally expensive.

Facing the complex vulnerability detection scenario, we
propose a novel search strategy, named Progressive Search
Strategy, to alleviate the computational burden while preserv-
ing a good performance and reducing false positives caused
by patched functions in vulnerability detection. The strategy
combines two sub-strategies. First, we use function embed-
dings as global summaries for coarse-grained search. Second,

7

we design a pairwise similarity calibration for candidate func-
tions to supplement the function embeddings with fine-grained
information to keep high precision for vulnerability detection.

1) Function Embedding Search: With the help of the
entropy-based adapter, function embeddings generated by
IRFM for similar functions are close in the embedding space.
To efficiently detect similar functions in a large function
repository, we use Euclidean distance similarity of function
embeddings to retrieve candidates in a coarse-grained man-
ner, which will significantly reduce the scope of fine-grained
detection and alleviate the computational burden.

In Algorithm 1 Ln.2, we perform matrix computations on
pre-generated function embeddings to obtain the Euclidean dis-
tance similarity. Given a query set containing n functions and
a function repository containing m functions, we use VulHawk
to generate their function embedding matrices N ∈ Rn×d and
M ∈ Rm×d. The matrix computation function is as follows:

Y = (N ∗N) ~1d ~1m
T
+ ~1n((M ∗M) · ~1d)T − 2NMT

= (N ∗N) ~1d ~1m
T
+ ~1n ~1d

T
(M ∗M)− 2NMT

(10)

where ~1d ∈ Rd×1 denotes the calculation of the sum of each
row values, and ~1m

T ∈ R1×m is used to expand a column
vector into a matrix. The result Y ∈ Rn×m represents the
distances between the query set and the function repository,
where yij represents the distance between i-th function in
the query set and j-th function in the function repository.
Then, we convert Euclidean distance matrix Y to similarity
S (sij ∈ [0, 1]) using the Equation 7. In Algorithm 1 Ln.4,
with the default threshold h, we take the top-K candidates as
the results. Note that it can also use libraries such as Faiss [21]
for further search acceleration.

2) Similarity Calibration: As with other methods, our func-
tion embeddings are designed to be robust against scenarios
that cross different file environments. They are tolerant to
minor changes. At the same time, they may be insensitive
to small vulnerability patches due to the lack of fine-grained
information. This will bring intolerable false positives and in-
creases the analysis burden on researchers. For high-precision
binary code search, we propose a similarity calibration for
fined-grained detection. It combines the information of basic
blocks, string constants, and imported functions to compute
pairwise similarity scores, from which the vectors are extracted
and combined with the function-level information to boost the
performance of vulnerability detection.

Block-level Features. The block-level features, such as the
block embedding distribution and function size, may be lost
by function-level embeddings. In many cases, the differences
between functions lie in small substructures and are hard to be
reflected by function embeddings. An analogy is that, in graph
matching, the graph matching performance based on graph
embeddings can be enhanced via fine-grained node-level infor-
mation [1]. In Algorithm 1 Ln.6, we calculate the basic block
similarities between the queried function and its candidate
functions to supplement with block-level information. Given
two functions f1 and f2, we first use Equation 10 to calculate
the similarity of their basic block sets, and then count the
maximum similarity according to the range [0, 0.2), [0.2, 0.4),
[0.4, 0.6), [0.6, 0.8) and [0.8, 1.0]. In this way, we generate

Algorithm 1: Progressive Search Strategy Algorithm
Input: A set of queried functions Fquery and the function repository F .
Output: The search result Smatched.

1 Smatched = { } ;

/* Function search */
2 M = EuclideanSimilarity(Fquery , F) ;

/* Similarity calibration */
3 for each fquery in M do
4 Fcandidates = F →GetCandidates(fquery , M , topK, h) ;
5 for each fcandidate in Fcandidates do
6 Vblk = GetBlockSimilarity(fquery , fcandidate) ;
7 Vstr = GetStringSimilarity(fquery , fcandidate) ;
8 Vimp = ImportsJacarrdSimilarity(fquery , fcandidate) ;
9 V = concatenate(Vblk , Vstr , Vimp, sfunc) ;

10 s′ = SimilarityCalibration(V) ;
11 if s′ > h then
12 Smatched = Smatched∪ (fquery , fcandidate) ;

13 Output Smatched;

a 5-dimension vector Vblk as supplements at the basic block
level.

String Features. Since the string constants and imported
functions are the same or similar in similar function pairs,
their similarity also plays a role in indicating the function
similarity. Algorithm 1 Ln.7 is to calculate the string similarity.
We use a pre-trained model Sentence-BERT [46] to generate
string embeddings, which makes our similarity calculation
more powerful because it could allocate larger similarity scores
to similar strings. For string constants, we use Sentence-BERT
to generate embeddings for concatenated strings. Following the
Sentence-BERT settings [46], we use the cosine similarity of
string embeddings. Here, we generate a 2-dimension vector
Vstr: the string similarity and the total length of strings.

Imported Functions. In Algorithm 1 Ln.8, we use the
Jaccard Index to calculate the similarity si of two imported
function sets I1 and I2: si = 1− |I1∩I2||I1∪I2| , where |I1∩I2| denotes
the number of imported functions in both sets, and |I1 ∪ I2|
denotes the total number of imported functions. Here, we
generate a 2-dimension vector Vimp: the similarity of imported
functions and the total number of imported functions.

After computing the above three vectors, we concatenate
these vectors and the similarity s from the function embedding
search into the vector V . Then, we feed the vector V into a
feed-forward network to learn weights and predict the final
function similarity s′. We use the Cross-Entropy loss function
to optimize the network weights. Finally, we use the default
threshold h to filter out similar functions as the results.

IV. EVALUATION

In this section, we compare VulHawk with available state-
of-the-art binary code search approaches and binary code sim-
ilarity detection approaches in three different scenarios: cross-
compilers, cross-optimization levels, and cross-architectures.
The experiments aim to answer the following research ques-
tions: RQ.1 Given two binary functions, can VulHawk deter-
mine whether they are similar (i.e., one-to-one comparison)?
RQ.2 Can VulHawk be used for searching one function in a
large function repository (i.e., one-to-many search)? RQ.3 Can
VulHawk identify how many functions are similar from two
binaries (i.e., many-to-many matching)? RQ.4 How efficient

8

TABLE II. THE SETTING OF SEVEN EVALUATION TASKS.

Task XO XA XC XO+XA XO+XC XA+XC XO+XA+XC
compiler × × © × © © ©
architecture × © × © × © ©
optimization © × × © © × ©
© represents the function pairs with different settings for this, while × represents the function pairs
with the same settings for this.

is VulHawk in searching in the large repository (i.e., runtime
efficiency)? RQ.5 How is the contribution of each component
in VulHawk (i.e., ablation study)? RQ.6 Can VulHawk detect
1-day vulnerabilities in the real world?

A. Implementation and Experiment Setup

We implement VulHawk using Transformers [52], Net-
workX [17], and PyG [51], based on Python 3.8.5. The disas-
sembler is IDA Pro 7.5 [45]. Our experiments are performed
on a desktop computer running Windows 10 with Intel Core i9-
10920X CPU, 64GB DDR4 RAM, and one NVIDIA RTX3090
GPU. To facilitate further research, we make the programs and
datasets publicly available on GitHub.

Hyper-params. In the RoBERTa model, layer=6,
head=8 and hidden dimension=256; in the GCN model,
hidden dimension=256 and layer=16; in the model to
identify file environments, layer=8, input dimension=258,
hidden dimension=64; in the entropy-based adapter,
layer=2 and hidden dimension=256; in the calibration
networks, input dimension=10 and layer=3. These settings
are a trade-off between efficiency and performance.

1) Datasets: As with the previous work [10], [11], [27],
[30], [34], [35], [55], we use following projects Coreutils-8.30,
Curl-7.70, Diffutils-3.6, Findutils-4.7.0, Libmicrohttpd-0.9.75,
mtools-4.0.36, OpenSSL-1.1.1l, putty-0.74, wget2-2.0.0, and
sqlite-3.37.1. The dataset is widely used in practice and related
work. We compile these projects using 2 compilers (GCC-10
and Clang-10), 6 optimization levels (O0, O1, O2, O3, Os
and Ofast), 3 architectures (x86, arm and mips), and 2
word sizes (32-bit and 64-bit). In total, we obtain 3,393
files containing 596,099 binary functions and 13,398,845 basic
blocks. To evaluate the generalization capability of the trained
model on unseen binaries, we randomly select half of the
binaries in our dataset for model training. Any binaries in the
training set do not appear in the evaluation set, which ensures
that the evaluation set is unknown to VulHawk. These settings
ensure that generated binaries are more similar to real-world
cases, making the evaluation practical and representative. As
Table II shown, we identify seven different tasks to evaluate:
(1) XO, (2) XC, (3) XA, (4) XO+XC, (5) XO+XA, (6)
XC+XA, and (7) XO+XC+XA, where ×/© represents the
function pairs have the same/different settings for this. For
example, the task XO+XC represents the function pairs with
different optimizations and compilers but the same architec-
tures.

2) Baselines: In the comparative experiments, we select
the state-of-the-art methods as baseline techniques:

• PalmTree [27], the state-of-the-art BCSD approach, uses
pre-trained models to generate instruction embeddings
which can be used to calculate function similarity.

• SAFE [35] uses a word2vec model to generate instruction
embeddings, and proposes a recurrent neural network to
generate function embeddings.
• Trex [41], the state-of-the-art BCSD method, uses transfer-

learning-based models based on micro-traces to generate
function embeddings for matching similar functions.
• Asteria [58] uses a Tree-LSTM network based on abstract

syntax trees (ASTs) and adopts a Siamese network [3] to
calculate function similarities, where its experiments show
Asteria outperforms Gemini [55].
• Asm2Vec [10] uses an unsupervised learning model to

generate function embeddings using the PV-DM model.
• BinDiff [61], a state-of-the-art commercial BCSD tool, uses

multiple features to perform similar function detection. We
measure it with its latest version 7 using default settings.
• Graph Matching Networks (GMN) [28]. The existing

studies [34] show that GMN based on CFG has natural
advantages in cross-architecture scenarios. GMN is set up
as the study [34].

For the above baselines, we use their original implementations
and default settings. To evaluate the contributions of the
entropy-based adapter and the similarity calibration strategy,
we set up three configurations:

• VulHawk: the original VulHawk.
• VulHawk-ES: VulHawk replaces the entropy-based adapter

with neural networks and does not use the similarity cali-
bration.
• VulHawk-S: VulHawk without the similarity calibration.

B. One-to-one Comparison

We benchmark the performance of VulHawk and baselines
with one-to-one function similarity detection, which is widely
performed in previous methods [27], [34], [41], [55]. As in
their experiment settings, we construct a balanced evaluation
set of 50k positive function pairs and 50k negative function
pairs, and an unbalanced evaluation set of 1,400 positive
function pairs and 140k negative function pairs for each
task. We use the area under curve (AUC) of the receiver
operating characteristic (ROC) curve as measurements. AUC
is a comprehensive performance metric of a model integrating
all the possible classification thresholds. Table III shows the
comparative results of VulHawk and other baselines.

As shown, VulHawk outperforms SAFE, Asteria, GMN,
PalmTree, Asm2Vec, and Trex in terms of AUC scores on both
balanced and unbalanced sets in all experiment settings. For
example, in the cross-architecture (XA) experiment VulHawk
achieves an AUC of 0.998, where Trex gets an AUC of
0.947, Asteria gets an AUC of 0.951, SAFE only gets an
AUC of 0.509, and PalmTree and Asm2Vec fails in the
cross-architecture experiment. PalmTree and Asm2Vec focus
on a mono-instruction set (x86), which cannot deal with
functions from different architectures. Though SAFE trained
its model on the different instruction sets, it is still hard to
build semantic relations between instructions from different
ISAs and embed similar functions from different architectures
into similar vectors. As stated in its Github issues2, current
SAFE hardly supports cross-architecture tasks. Though GMN

2https://github.com/gadiluna/SAFE/issues/4

9

TABLE III. AUC SCORE OF ONE-TO-ONE EXPERIMENTS

Balanced Set Unbalanced Set
XC XO XA XC+XO XO+XA XC+XA XC+XO+XA XC XO XA XC+XO XO+XA XC+XA XC+XO+XA

Asm2Vec* 0.796 0.854 - 0.861 - - - 0.803 0.830 - 0.864 - - -
Asteria 0.904 0.924 0.951 0.879 0.950 0.933 0.877 0.905 0.933 0.956 0.870 0.950 0.935 0.892
PalmTree* 0.965 0.973 - 0.952 - - - 0.965 0.969 - 0.948 - - -
GMN 0.769 0.780 0.865 0.711 0.726 0.775 0.717 0.773 0.783 0.870 0.718 0.740 0.775 0.723
SAFE 0.980 0.983 0.509 0.975 0.505 0.513 0.515 0.979 0.984 0.504 0.975 0.500 0.512 0.509
Trex 0.981 0.965 0.947 0.963 0.901 0.928 0.883 0.984 0.962 0.946 0.957 0.896 0.937 0.879
VulHawk 0.993 0.990 0.998 0.990 0.992 0.994 0.988 0.996 0.988 0.998 0.991 0.993 0.995 0.987
VulHawk-ES 0.971 0.979 0.989 0.962 0.9633 0.979 0.966 0.974 0.979 0.987 0.963 0.966 0.980 0.961
VulHawk-S 0.978 0.983 0.992 0.971 0.972 0.983 0.973 0.980 0.985 0.990 0.971 0.974 0.982 0.968
* PalmTree and Asm2Vec do not support cross-architecture tasks.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tu
re

 P
os

iti
ve

 R
at

e

SAFE
GMN
Asteria
Asm2Vec
PalmTree
Trex
VulHawk-ES
VulHawk-S
VulHawk

(a) XO

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tu
re

 P
os

iti
ve

 R
at

e

SAFE
GMN
Asteria
Asm2Vec
PalmTree
Trex
VulHawk-ES
VulHawk-S
VulHawk

(b) XO+XC

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tu
re

 P
os

iti
ve

 R
at

e

SAFE
GMN
Asteria
Trex
VulHawk-ES
VulHawk-S
VulHawk

(c) XC+XA

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tu
re

 P
os

iti
ve

 R
at

e

SAFE
GMN
Asteria
Trex
VulHawk-ES
VulHawk-S
VulHawk

(d) XC+XO+XA
Fig. 8. ROC curves of one-to-one function comparison on the balanced
evaluation set.

achieves an AUC of 0.865 in the XA task, it performs poorly
in other tasks. Because CFGs are robust against architectures
but changed in different compilers and optimization levels.
VulHawk lifts binary code into microcode to mitigate the
problem of different ISAs and uses entropy-based adapters
to transfer embeddings into the intermediate file environment,
which makes VulHawk outperform other baselines. Fig. 8
presents detailed ROC curves of VulHawk and other baselines,
where the closer the ROC curve is to the upper left, the better
the performance. As shown in Fig. 8, the more differences
in the file environment (compiler, architecture, and optimiza-
tion levels) between functions, the worse the performance
of function comparisons. Fortunately, with the help of the
entropy-based adapter and similarity calibration, VulHawk is
resilient to these differences and achieves high performance.
Answer to RQ.1: VulHawk ranks the first in all one-to-one
comparison tasks, demonstrating the robustness of VulHawk
using divide-and-conquer strategy against cross-architecture,
cross-optimization level, and cross-compiler tasks.

C. One-to-many Search

In this section, we evaluate the performance of the one-
to-many search. As in the study [34], we use ranking mea-
surements to evaluate the model performances in searching
applications, e.g., the vulnerability search, which retrieves

0 10 20 30 40 50
Number of results retrieved

0.2

0.4

0.6

0.8

1.0

R
ec

al
l@

K

SAFE
GMN
Asteria
Asm2Vec
PalmTree
Trex
VulHawk-ES
VulHawk-S
VulHawk

(a) XO

0 10 20 30 40 50
Number of results retrieved

0.2

0.4

0.6

0.8

1.0

R
ec

al
l@

K SAFE
GMN
Asteria
Trex
VulHawk-ES
VulHawk-S
VulHawk

(b) XC+XO+XA

Fig. 9. Comparison of the recall at different K values for XO and
XC+XO+XA tasks.

candidate functions from a large database. We use the recall
(Recall@K) at different K thresholds as the metrics, which
is a widely used ranking metric. We use the unbalanced set
(in Section IV-B) as the evaluation set. In the evaluation, the
models calculate and rank the similarity between each queried
function and its positive/negative samples.

We collect recall at different top-K results and plot recall
against k in Fig. 9. Results show VulHawk outperforms the
state-of-the-art approaches and achieves the best recall@1 of
0.935 in the XO task and 0.879 in the XC+XO+XA task. In
the XC+XO+XA task, when the number of results retrieved is
over 30, the recall of each approach tends to be stable, where
VulHawk achieves the recall@30 around 0.994, VulHawk-ES
achieves the recall@30 around 0.968, VulHawk-S achieves
the recall@30 around 0.988, Trex achieves the recall@30
around 0.888, and SAFE gets the recall@30 around 0.310.
The recall@K of SAFE in the XC+XO+XA task is close to
the random probability (K100), because SAFE is not robust on
cross-architecture tasks due to heavy OOV issues, which has
been shown in the one-to-one comparison. In the one-to-many
search against a large size of function repository, the weakness
of SAFE is magnified, so it only obtains a recall@1 of 0.007.
Answer to RQ.2: VulHawk can retrieve the best candidates
accurately in a large function repository.

D. Many-to-many Matching

We conduct experiments to measure the performance on
many-to-many matching, which is performed in previous work
[10], [61]. Many-to-many matching is used to measure the
similarity of two given binaries at the function level. As their
experiment settings, we construct an evaluation set of binary
pairs for each task, and each tool to generate the best function
similarity matching for each binary pair. We report each tool’s

10

TABLE IV. RESULTS OF MANY-TO-MANY MATCHING

Recall Precision
XO XC XA Average XO XC XA AverageO0-O3 O2-O3 Ofast-O3 Ofast-Os Average O0-O3 O2-O3 Ofast-O3 Ofast-Os Average

SAFE 0.227 0.823 0.946 0.519 0.629 0.247 0.036 0.304 0.315 0.918 0.975 0.709 0.729 0.390 0.036 0.385
Asteria 0.299 0.801 0.869 0.527 0.624 0.464 0.680 0.589 0.372 0.558 0.580 0.451 0.490 0.475 0.500 0.488
Asm2Vec* 0.420 0.736 0.400 0.452 0.502 0.298 - 0.400** 0.503 0.804 0.402 0.457 0.542 0.473 - 0.508**

BinDiff 0.365 0.979 0.994 0.892 0.808 0.455 0.831 0.480 0.419 0.981 0.994 0.925 0.831 0.486 0.955 0.757
PalmTree* 0.414 0.926 0.944 0.784 0.767 0.431 - 0.599** 0.487 0.962 0.976 0.856 0.820 0.617 - 0.718**

GMN 0.141 0.576 0.908 0.409 0.508 0.176 0.284 0.323 0.104 0.588 0.908 0.386 0.497 0.176 0.285 0.319
Trex 0.432 0.950 0.954 0.784 0.780 0.616 0.555 0.650 0.481 0.948 0.955 0.743 0.782 0.642 0.552 0.659
VulHawk 0.876 0.994 0.994 0.950 0.954 0.805 0.987 0.915 0.818 0.995 0.994 0.950 0.940 0.813 0.985 0.913
VulHawk-ES 0.793 0.910 0.994 0.887 0.896 0.765 0.981 0.881 0.593 0.909 0.992 0.824 0.830 0.733 0.970 0.844
VulHawk-S 0.873 0.984 0.994 0.958 0.952 0.796 0.987 0.912 0.673 0.984 0.992 0.923 0.893 0.767 0.978 0.879
* PalmTree and Asm2Vec do not support cross-architecture tasks.
** Average of results cross compiler tasks and cross-optimization levels tasks, without cross-architecture tasks.

SAFE
BinDiff

Asteria GMN
Asm2Vec

PalmTree Trex

VulHawk-ES

VulHawk-S
VulHawk

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

0.247 0.455 0.464 0.176 0.298 0.431 0.616 0.765 0.796 0.805

(a) XC: recall

SAFE
BinDiff

Asteria GMN Trex

VulHawk-ES
VulHawk-S

VulHawk
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

0.036 0.831 0.68 0.284 0.555 0.981 0.987 0.987

(b) XA: recall

SAFE
BinDiff

Asteria GMN
Asm2Vec

PalmTree Trex

VulHawk-ES

VulHawk-S
VulHawk

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

0.629 0.808 0.624 0.508 0.502 0.767 0.780 0.896 0.952 0.954

(c) XO: recall

SAFE
BinDiff

Asteria GMN
Asm2Vec

PalmTree Trex

VulHawk-ES

VulHawk-S
VulHawk

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0.390 0.486 0.475 0.176 0.473 0.617 0.642 0.733 0.767 0.813

(d) XC: precision

SAFE
BinDiff

Asteria GMN Trex

VulHawk-ES
VulHawk-S

VulHawk
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0.036 0.955 0.5 0.285 0.552 0.970 0.978 0.985

(e) XA: precision

SAFE
BinDiff

Asteria GMN
Asm2Vec

PalmTree Trex

VulHawk-ES

VulHawk-S
VulHawk

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

0.729 0.831 0.490 0.497 0.542 0.820 0.782 0.830 0.893 0.940

(f) XO: precision

Fig. 10. The violin plots of many-to-many matching.

average recall and precision results under different tasks in
Table IV.

Among them, baselines have the lowest result in the O0-
O3 of the XO experiment. VulHawk achieves a recall of 0.876
in this experiment, which improves the recall by 385.9%,
292.9%, 208.6%, 240.0%, 211.6%, 621.3% and 202.8% over
SAFE, Asteria, Asm2Vec, BinDiff, PalmTree, GMN, and Trex.
Interestingly, the worst results of VulHawk (0.805) are in
the XC experiment, not the O0-O3 experiments. Nevertheless,
VulHawk still outperforms the state-of-the-art methods in the
XC experiments. In the O3 option, to reduce the size and speed
up the efficiency of binary functions, it compresses redundant
instructions in the O0 option into concise instructions, which
strengthens the main semantics and removes redundant seman-
tics of functions, leading to semantic differences. VulHawk
uses instruction simplification to distill binary functions and
remains the main semantics, which helps VulHawk mitigate
the impact of optimization levels and make it resilient to cross-
optimization level experiments.

Fig. 10 shows the distribution of recall and precision in
XC, XA, and XO tasks with violin plots, where we annotate
the average result of each method above the figure. Compared
to SAFE, BinDiff, Asteria, Asm2vec, PalmTree, GMN, and
Trex, VulHawk’s recall and precision probability distribution
is closer to 1 and more concentrated, while the distribution of

results for other methods is scattered and unstable against dif-
ferent scenarios. This shows that the performance of VulHawk
is better and more stable than other baselines.

Compared with one-to-one comparison, the recall and pre-
cision rates of the many-to-many matching are lower, because
there are more negative samples in many-to-many matching,
and wrong-matched pairs impact subsequent results of the
matching algorithm (e.g., Hungarian algorithm [25]). Answer
to RQ.3: VulHawk can be used to match similar functions
between two binaries, and it outperforms the state-of-the-art
methods in many-to-many matching.

E. Runtime Efficiency

We evaluate the runtime efficiencies of VulHawk with
different settings. Given a function, we use the model to
be evaluated to extract features and generate its function
embedding, and then retrieve top-10 candidate functions from
the repository. The record time is from extracting features
to returning the similarity of candidate functions, and each
test is measured ten times to minimize accidental factors. The
repository size is set to 103, 104, 105, and 106.

Table V shows the time cost of searching a function in
the repository of different sizes and their throughput. The
throughput represents the number of repository functions that

11

TABLE V. EFFICIENCY OF VULHAWK AND BASELINES

1:103 1:104 1:105 1:106 Throughput
VulHawk-ES 0.255s 0.272s 0.434s 1.948s 590,091
VulHawk-S 0.266s 0.276s 0.425s 1.997s 577,251 (-2.2%)
VulHawk 0.286s 0.345s 0.499s 2.070s 559,898 (-5.1%)

can be retrieved in one second, which does not consider
the embedding generation’s overhead. The results show that
VulHawk is slower than VulHawk-ES and VulHawk-S, because
VulHawk uses the entropy-based adapter during the embedding
generation and uses the similarity calibration during the search
process. It is acceptable to trade a small overhead for higher
precision and recall. With the GPU acceleration, VulHawk can
search one function from 106 functions in about 2 seconds.
Answer to RQ.4: VulHawk can maintain high efficiency in
the large function repository (106).

F. Ablation Study

We analyze the contributions of the entropy-based adapter
and the similarity calibration strategy in VulHawk.

Entropy-based Adapter. As shown in Table III, VulHawk-
S has a higher AUC than VulHawk-ES in seven one-to-one
function comparison tasks. In Fig. 9, VulHawk-S achieves
higher recalls@K than VulHawk-ES in the one-to-many
search. These show that VulHawk-S outperforms VulHawk-
ES, which turns out that the performance boost is from
the contribution of the entropy-based adapter, not the extra
neural networks. The entropy-based adapter transfers function
embeddings from different file environments into the same file
environment, alleviating the differences caused by compilers
and optimization levels. For example, in the many-to-many
matching scenarios, VulHawk-ES get a recall of 0.793 in the
O0-O3 experiment, while VulHawk-S, with the help of the
entropy-based adapter, alleviates the differences caused by
different file environments, reaching a recall of 0.873.

Similarity Calibration. Table III and Fig. 9 show the
VulHawk achieves better results than VulHawk-S in one-to-
one function comparison and one-to-many search scenarios.
Table IV also shows VulHawk is more precise than VulHawk-
S in many-to-many matching scenarios. The precision of
VulHawk improves from 0.593 to 0.818 in the O0-O3 task of
many-to-many matching, because VulHawk uses the similarity
calibration to supplement the function similarity from block-
level features, string features, and imported functions, which
makes the information considered in the similarity calculation
more comprehensive and improve detection precision.

Training Tasks. To evaluate the contributions of three
training tasks, we also evaluate VulHawk with different train-
ing settings. To more clearly measure the contribution of
training tasks, the evaluation models do not use entropy-based
adapters and the similarity calibration, and differ only on
training tasks. In the XC+XO+XA task of the one-to-one com-
parison scenario, the model trained by the MLM task gets an
AUC of 0.833, the model trained by the MLM+ROP task gets
an AUC of 0.934, and the model trained by MLM+ROP+ABP
achieves an AUC of 0.966. The ROP training task helps the
model to learn root token semantics, which can use root
token semantics to replace OOV operands for alleviating OOV
issues. The ABP training task helps the model learn the order-
relations of microcode. Both of them improve the model

performance to distinguish function similarities. Answer to
RQ.5: The entropy-based adapter, the similarity calibration,
and ROP and ABP training tasks have positive contributions
to the performance of VulHawk.

G. File Environment Identification

We also evaluate the accuracy of the entropy-based file en-
vironment identification. Here, we use 10-fold cross-validation
to split all binaries for training and evaluation, as in traditional
machine learning settings. These binaries are from various
architectures (x86, arm, and mips) and different compilers
(GCC and Clang). Pizzolotto et al. [44] use CNN models and
LSTM models on function bytes to identify file environments.
To better demonstrate our method’s performance, we download
their pre-trained models and set them (CNN and LSTM) as
comparisons. Note that compiler and optimization levels of
given binaries are unknown and varied in practice, so we do
not fix other parameters (e.g., architectures and optimization
levels) when evaluating one parameter (e.g., compilers) to
ensure practicability.

0 5 10 15 20 25
Time (Seconds)

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

CNN 0.751
LSTM 0.788
VulHawk 0.980

(a) optimization levels

0.0 2.5 5.0 7.5 10.0 12.5
Time (Seconds)

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

CNN 0.587
LSTM 0.587
VulHawk 0.998

(b) compilers

Fig. 11. Comparison with existing methods on file environment identification.

Fig. 11 shows the trend of the accuracy of VulHawk and
other methods over time. There are the following observations
from the results: (1) VulHawk outperforms CNN and LSTM
in both identifications of compiles and optimization levels. (2)
The identification speed of VulHawk is faster than CNN’s and
LSTM’s. (3) The accuracy curve of VulHawk is steady, while
the curves of CNN and LSTM are fluctuating. It indicates
that VulHawk is more generalized in various scenarios, while
CNN and LSTM are struck in some cases. We conduct an in-
depth analysis as follows. Compared with CNN and LSTM,
VulHawk adopts entropy streams including the global infor-
mation of binaries, instead of a single function’s raw bytes,
which makes the accidental deviation of functions not impact
VulHawk much. The entropy keeps obvious discrimination in
different file environments, while the difference in raw bytes
is not obvious. These make VulHawk keep high generalization
and outperform CNN and LSTM. Besides, VulHawk outper-
forms CNN and LSTM not only in accuracy but also in
efficiency. Because VulHawk uses a powerful feature (entropy)
and our model is much lighter than CNN and LSTM, e.g., the
size of parameters in our model is only 1.3% of that of CNN.

To comprehensively evaluate our entropy-based file envi-
ronment identification, we conduct experiments in various sce-
narios with different architectures (x86, mips, and arm), file
sizes (small sizes and large sizes), and file types (libraries and
executable files). Here, considering the file size distribution,
we treat file sizes less than 1024 KB as small files and vice
versa as large files. Fig. 12 shows the results, and each block is
annotated with the proportion of classification. For example, in

12

O0 O1 O2 O3
Predicted Optimization Level

O0

O1

O2

O3

Tr
ue

 O
pt

im
iza

tio
n

Le
ve

l

1.000 0.000 0.000 0.000

0.000 0.997 0.000 0.003

0.000 0.002 0.972 0.027

0.000 0.000 0.003 0.997

0.0

0.2

0.4

0.6

0.8

1.0

(a) x86

O0 O1 O2 O3
Predicted Optimization Level

O0

O1

O2

O3

Tr
ue

 O
pt

im
iza

tio
n

Le
ve

l

1.000 0.000 0.000 0.000

0.000 0.916 0.039 0.045

0.000 0.004 0.986 0.011

0.000 0.000 0.046 0.954

0.0

0.2

0.4

0.6

0.8

1.0

(b) arm

O0 O1 O2 O3
Predicted Optimization Level

O0

O1

O2

O3

Tr
ue

 O
pt

im
iza

tio
n

Le
ve

l

1.000 0.000 0.000 0.000

0.000 0.994 0.006 0.000

0.000 0.013 0.974 0.013

0.000 0.000 0.013 0.987

0.0

0.2

0.4

0.6

0.8

1.0

(c) mips

O0 O1 O2 O3
Predicted Optimization Level

O0

O1

O2

O3
Tr

ue
 O

pt
im

iza
tio

n
Le

ve
l

1.000 0.000 0.000 0.000

0.000 0.966 0.015 0.019

0.000 0.004 0.976 0.020

0.000 0.000 0.018 0.982

0.0

0.2

0.4

0.6

0.8

1.0

(d) All

O0 O1 O2 O3
Predicted Optimization Level

O0

O1

O2

O3

Tr
ue

 O
pt

im
iza

tio
n

Le
ve

l

1.000 0.000 0.000 0.000

0.000 0.964 0.015 0.022

0.000 0.002 0.989 0.009

0.000 0.000 0.008 0.992

0.0

0.2

0.4

0.6

0.8

1.0

(e) Small files

O0 O1 O2 O3
Predicted Optimization Level

O0

O1

O2

O3

Tr
ue

 O
pt

im
iza

tio
n

Le
ve

l

1.000 0.000 0.000 0.000

0.000 0.980 0.020 0.000

0.000 0.020 0.850 0.130

0.000 0.000 0.055 0.945

0.0

0.2

0.4

0.6

0.8

1.0

(f) Large files

O0 O1 O2 O3
Predicted Optimization Level

O0

O1

O2

O3

Tr
ue

 O
pt

im
iza

tio
n

Le
ve

l

1.000 0.000 0.000 0.000

0.000 0.831 0.081 0.088

0.000 0.011 0.949 0.040

0.000 0.000 0.036 0.964

0.0

0.2

0.4

0.6

0.8

1.0

(g) Library files

O0 O1 O2 O3
Predicted Optimization Level

O0

O1

O2

O3

Tr
ue

 O
pt

im
iza

tio
n

Le
ve

l

1.000 0.000 0.000 0.000

0.000 0.997 0.000 0.003

0.000 0.002 0.981 0.016

0.000 0.000 0.014 0.986

0.0

0.2

0.4

0.6

0.8

1.0

(h) Executable files

Fig. 12. The results of file environment identification. The overall optimiza-
tion accuracy is 0.980.

arm-O3 predictions, 95.4% are correctly classified as O3, and
4.6% are classified as O2, where the overall accuracy is 96.2%.
The option O0 achieves a high accuracy, because O0 uses
default optimizations to reduce the compilation time, which is
significantly different from other options. The identifications
of O2 and O3 in the mips and library files achieve the
worst results, where most misidentifications are centered on
the distinction between O2 and O3. Compared with O0, the
O3 option adds more than 285 optimizations, while O3 only
has 3 more optimizations than O2. Thus, binaries from O2 and
O3 have highly similar structures. Since binaries from O2 and
O3 are highly similar, these misidentifications are acceptable
and have little impact on the binary function search. When we

TABLE VI. RESULTS OF VULNERABILITY SEARCH AND CONFIRMED
VULNERABLE FUNCTIONS

CVE Confirmed # VulHawk Trex SAFE GMN Asteria
1 2015-0286 3 3;0;0* 0;0;3 0;0;3 3;215;0 3;0;0
2 2015-1789 3 3;0;0 0;0;3 0;0;3 2;766;1 3;0;0
3 2016-0797 8 8;0;0 0;0;8 0;0;8 8;2073;0 8;0;0
4 2016-0798 4 4;0;0 0;0;4 0;0;4 4;287;0 4;0;0
5 2016-2176 4 4;0;0 0;0;4 3;0;1 4;335;0 4;0;0
6 2016-2182 14 14;0;0 9;0;5 12;0;2 3;7814;11 14;0;0
7 2016-6303 17 17;0;0 13;0;4 17;4459;0 17;1802;0 17;0;0
8 2016-8618 10 10;0;0 9;0;1 9;0;1 9;6520;1 10;0;0
9 2016-8622 10 10;0;0 9;0;1 10;753;0 10;9084;0 10;4;0
10 2018-1000301 9 9;0;0 4;0;5 9;0;0 9;4801;0 9;27;0
11 2021-22924 10 10;0;0 4;0;6 9;0;1 10;2264;0 10;2;0
12 2021-23840 1 1;0;0 1;0;0 0;0;1 1;381;0 1;19;0

Total 93 93;0;0 49;0;44 69;5212;24 80;36342;13 93;52;0
* “3;0;0” represents VulHawk detects three true positives, zero false positives, and zero false negatives.

consider O2 and O3 together, the accuracy of distinguishing
them from O0 and O1 is over 90% in all scenarios. The
results show our entropy-based file environment identification
is powerful in various scenarios with different architectures,
file sizes, and file types.

H. 1-day Vulnerability Detection from Firmware

In this experiment, we collect 20 of the latest IoT firmware
images from three vendors (D-Link, TP-Link, and NetGear)
and perform VulHawk and other baselines in the 1-day vul-
nerability detection task. The projects OpenSSL and Curl are
widely used in IoT firmware, so we select them as the targets
and build a vulnerability repository based on the Common
Vulnerabilities and Exposures (CVE) database. The repository
contains vulnerable functions and their patched functions of 12
relevant CVEs, where their details and ground truth are shown
in Table VI. In total, there are 53,739 functions, including 93
related vulnerable functions and 119 related patched functions.
For each vulnerable/patched function, we use VulHawk to
generate their function embeddings and record their fine-
grained features for similarity calibration. In the vulnerability
detection phase, we use all functions in the firmware libraries
as function queries and perform a one-to-many search in the
built vulnerability repository.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.00

0.25

0.50

0.75

1.00

Re
ca

ll

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

SAFE GMN Asteria Trex VulHawk-S VulHawk
Fig. 13. Baseline comparison for 1-day vulnerability detection with different
thresholds.

Table VI shows the results of VulHawk and other baselines
with their best threshold according to Fig. 13. For 12 CVEs,
Trex has zero false positives but 52.7% recall; GMN achieves
86.0% recall but brings 36,342 false positives; Asteria achieves
64.1% precision with zero false negatives; while VulHawk
achieves the best performance with zero false positives and
100% recall. Furthermore, we make the following observa-
tions. (1) VulHawk outperforms baselines in 1-day vulnera-
bility detection with high recall and precision, which frees
researchers from the burden of detecting known vulnerabilities

13

in unknown binaries. (2) The impact of third-party library
vulnerabilities in IoT firmware is still serious, and known
vulnerabilities in firmware images have not been fixed in time.
Even the latest firmware still contains vulnerabilities from 7
years ago. (3) The firmware images from adjacent models of
the same vendor generally have similar vulnerable functions
(see Appendix B). (4) Detecting vulnerabilities only by third-
party library versions will lead to false positives, because third-
party libraries may not include specific vulnerable functions
due to the lack of corresponding modules. For example, TP-
LINK Deco M4 uses OpenSSL 1.0.2d, which is an affected
version of CVE-2016-6303, but it is not affected by this vul-
nerability because it does not have the corresponding module.

False Positive Analysis. We change the thresholds to ana-
lyze the impact of different thresholds on 1-day vulnerability
detection. Fig. 13 shows the curves of recall/precision with
different thresholds. As the threshold increases, the recall
of VulHawk decreases slightly, while its precision increases
significantly. To support XC, XO, and XA tasks, SAFE, GMN,
and Asteria design their models to be robust against minor
changes of functions, which leads to difficulty in distinguish-
ing different functions and introduces false positives. Trex
uses fine-grained features as micro-traces to detect vulnerable
functions, which achieves high precision but suffers from
false negatives. We propose a progressive search strategy
combining coarse-grained search and fine-grained similarity
calibration, which allows VulHawk to achieve high recall while
maintaining high precision. For example, when the threshold
is set to 0.9, VulHawk reaches 100% recall with zero false
positives, which outperforms other baselines. We introduce
VulHawk-S, which does not use similarity calibration. Com-
pared with VulHawk-S, VulHawk shows a higher precision at
the same threshold in 1-day vulnerability detection. Because
fixed-length embeddings are designed to be robust against
minor changes introduced by different file environments, which
are coarse for precise vulnerability detection. We propose a
similarity calibration to supplement function embeddings with
fine-grained features to boost the detection precision. The
patched functions with minor modifications may bring false
positives when the threshold is set small. For example, the
function sub_20cc8 in libcurl.so of NetGear RBR20
is a patched function of CVE-2016-8618. Since this patch is
a minor change and does not modify any values3, VulHawk
will misidentify sub_20cc8 as a vulnerable function when
the threshold is below 0.85. Fortunately, when the threshold
of VulHawk is set to 0.9, these false positives are significantly
reduced with 100% recall.

Furthermore, we use VulHawk to perform vulnerability
detection in the latest projects, and find a suspected stack over-
flow vulnerability in OpenSSL-3.1.0/ssl/ssl_lib.c,
which has been fixed as a result of our report. This shows
VulHawk’s capability of detecting new vulnerabilities. The
details are shown in Appendix B. Finally, we have safely
reported the discovered vulnerabilities in our experiments
to the corresponding vendors and developers. Answer to
RQ.6: VulHawk can distinguish vulnerable functions and their
patched functions and detect 1-day vulnerabilities with high
performance over the state-of-the-art methods in the real world.

3https://curl.se/CVE-2016-8618.patch

V. DISCUSSION

In this section, we discuss the divide-and-conquer strategy,
the soundness of IRFM, and future research.

From the results, these baseline approaches are difficult
to achieve high performances in all three tasks of cross-
compilers, cross-optimization levels, and cross-architectures.
This is because the differences introduced by compilers,
architectures, and optimization levels are different. So it is
challenging to build a robust model against architectures,
compilers, and optimization levels at the same time. While
VulHawk uses the entropy-based adapter to implement the
divide-and-conquer strategy, which divides the similarity cal-
culation problem of C2

N cross-file-environment scenarios into
N − 1 embedding transferring sub-problems. By transferring
function embeddings from different file environments to the
same file environment, VulHawk can alleviate the differences
caused by compilers, architectures, and optimizations. It can
be found that the greater the differences introduced by the
file environments, the improvements are more obvious brought
by the entropy-based adapter (e.g., the XC task in Table IV).
So the divide-and-conquer strategy is very effective in the
complex IoT firmware search scenario.

The IRFM aims to generate robust basic block embeddings
and function embeddings, which are crucial for subsequent
detection and search. Here, we discuss its soundness: (1) In
VulHawk, we use microcode, a well-established intermediate
representation, to mitigate the differences caused by instruction
set architectures. (2) To increase the main semantics’ weights,
we simplify the redundant and obfuscated instructions, where
instructions to be removed are strictly filtered to avoid acciden-
tal deletion of return values, global variables, and arguments to
subfunctions (see Section III-A2). The experiment results show
that instruction simplification makes the distance between
similar blocks closer and draws dissimilar blocks further (Ap-
pendix A). For example, the average distance between similar
blocks reduces by 44.4%, and the average distance between
dissimilar blocks increases by 2.6% in the XC task. (3) Ap-
plying NLP techniques to binary code search can automatically
generate semantic embeddings of instruction sequences. While
we are not the first to apply NLP into binary code search [10],
[35], [60], we are the first to refine instruction sequences to
preserve main semantics in static BCSD approaches. For the
characteristics of binary functions, we customize the language
model and propose two pre-training tasks based on binary code
characteristics, which makes our model more robust. (4) The
previous work [34] proved that CFG-based GNNs are effective
ways of solving the binary function similarity problem. To
generate function embeddings, we utilize GCNs to aggregate
basic block semantics and integrate all basic block embeddings
based on CFGs, which makes generated function embeddings
include CFG structure features and basic block semantics.

In Section IV-H, we find outdated libraries used in firmware
images. Updating these outdated libraries directly to the latest
versions may break file dependencies in firmware. VulHawk
can detect these known vulnerable functions. Furthermore, we
can generate hot patches at the binary level to prevent these
known vulnerabilities. We leave this as future work.

14

https://curl.se/CVE-2016-8618.patch

VI. RELATED WORK

In this section, we briefly survey additional related work.
We focus on approaches using code similarity for code search
and known vulnerability discovery without source code.

Mono-architecture Approaches. Binary code search for
mono-architecture binaries has achieved a lot. TEDEM [43]
introduces tree edit distances to measure code similarity at the
level of basic blocks. BinHunt [15], and CoP [32] compare
binary code similarity using symbolic execution and a theorem
prover. But these approaches are computationally expensive
and thus not applicable to large function repositories. Tracelet
[7] decomposes binary functions into continuous traces and
uses the edit distances between two traces to measure their
similarity. Other methods [20], [23], [37], [38] use statisti-
cal features, syntax features, and structure features to match
similar binary functions. Inspired by NLP techniques, many
researchers [10], [11], [27] introduce language models to
extract the semantics of binary code. DeepBinDiff [11] con-
siders assembly instructions as words and uses Word2Vec
CBOW model [36] to generate semantic embeddings for binary
code. Asm2Vec considers functions as documents, and tokens
(opcodes or operands) as words in the document, and utilizes
a Distributed Memory Model of Paragraph Vectors (PV-DM)
model [26] to generate function embeddings. They represent
binary functions as high-dimensional numerical vectors, fa-
cilitating the search for similar candidate functions in large
function repositories. However, for IoT firmware images from
different architectures, binary code search methods are re-
quired to support finding similar functions across architectures.

Cross-architecture Approaches. Recently, researchers
start to address the challenge of cross-architecture binary
code search. Traditional approaches select architecture-robust
features from statistical features, syntax features, and structure
features to calculate the similarity of binary code. BinDiff
[61], as a state-of-the-art commercial binary code similarity
detection tool, extracts the number of basic blocks, string refer-
ences, and the structure of call graphs to calculate the similarity
between binary functions. DiscovRE [12] utilizes CFG-based
matching to find similar functions, but graph matching brings
expensive computation. Esh [5] uses SMT solver based on
data-flow slices of basic blocks to verify function similarity,
which does not support large function repositories. Genius
[14], introducing machine learning, considers statistical fea-
tures as attributes of CFGs to graph embeddings for binary
code search. Gemini [55] improves Genius by adopting neural
networks to generate function embeddings to match similar
functions. Gemini and Genius both use hand-crafted features
which require rich experience and expert knowledge to match
similar functions. InnerEye [60] treats binaries from different
architectures as different languages and uses neural machine
translation based Word2Vec model [36] to calculate binary
code similarity across specified architectures (x86 and arm).
SAFE [35] trains its language model using binaries from
multiple architectures to search binary code across architec-
tures. However, SAFE has heavy OOV issues in practice,
so it gets poor performance in cross-architecture tasks. Trex
[41] proposes micro-traces including instructions and dynamic
values, and learns function execution semantics from their
micro-traces for cross-architecture similar function matching.

According to different usage requirements, IoT firmware

images from different architectures are generated by different
compilers with different optimization levels. There are many
differences between these binaries caused by different com-
pilers and optimization levels. The existing methods using a
fixed trained model may work for specific optimization levels
and compilers, but they are still difficult to achieve good
performance against various compilers and optimization levels.

VII. CONCLUSIONS

In this paper, we propose a cross-architecture binary code
search approach VulHawk. It contains an intermediate rep-
resentation function model based on RoBERTa and GCNs
for generating function embeddings. For robustness against
different file environments, we propose a divide-and-conquer
strategy and introduce the entropy from the information-
theoretic perspective to identify the file environments of binary
code. We propose an entropy-based adapter to transfer function
embeddings into the same intermediate file environment to al-
leviate the differences caused by different compilers, optimiza-
tions, and architectures. In the progressive search strategy, the
similarity calibration supplements vulnerability detection using
fine-grained level features to reduce false positives caused
by patched functions. Extensive evaluations demonstrate that
VulHawk outperforms state-of-the-art approaches in seven
tasks. The divide-and-conquer strategy effectively improves
the robustness of VulHawk against compilers, optimization
levels, and architectures. The 1-day vulnerability detection
experiment shows VulHawk’s high performance in detecting
vulnerabilities.

ACKNOWLEDGMENT

We thank the anonymous reviewers for the helpful com-
ments. This work is partially supported by the National
University of Defense Technology Research Project (ZK20-
17, ZK20-09), the National Natural Science Foundation
China (62272472, 61902405), the HUNAN Province Natural
Science Foundation (2021JJ40692), the National Key Re-
search and Development Program of China under Grant No.
2021YFB0300101, and the National High-level Personnel for
Defense Technology Program (2017-JCJQ-ZQ-013).

REFERENCES

[1] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “Simgnn:
A neural network approach to fast graph similarity computation,” in
Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining, 2019, pp. 384–392.

[2] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda,
“Scalable, behavior-based malware clustering.” in NDSS, vol. 9. Cite-
seer, 2009, pp. 8–11.

[3] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
verification using a” siamese” time delay neural network,” Advances in
neural information processing systems, vol. 6, 1993.

[4] S. Cesare, Y. Xiang, and W. Zhou, “Control flow-based malware variant
detection,” IEEE Transactions on Dependable and Secure Computing,
vol. 11, no. 4, pp. 307–317, 2013.

[5] Y. David, N. Partush, and E. Yahav, “Statistical similarity of binaries,”
in Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2016, pp. 266–280.

[6] Y. David, N. Partush, and E. Yahav, “Firmup: Precise static detection
of common vulnerabilities in firmware,” in ACM SIGPLAN Notices,
vol. 53, no. 2. ACM New York, NY, USA, 2018, pp. 392–404.

15

[7] Y. David and E. Yahav, “Tracelet-based code search in executables,”
Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pp. 349–360, 2014.

[8] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
NAACL HLT 2019 - 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies - Proceedings of the Conference, vol. 1, no. Mlm, pp.
4171–4186, 2019.

[9] S. H. Ding, B. C. Fung, and P. Charland, “Kam1n0: MapReduce-based
Assembly Clone Search for Reverse Engineering,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining - KDD ’16. New York, New York, USA: ACM Press,
2016, pp. 461–470.

[10] S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting static
representation robustness for binary clone search against code obfusca-
tion and compiler optimization,” in 2019 IEEE Symposium on Security
and Privacy (SP). IEEE, 2019, pp. 472–489.

[11] Y. Duan, X. Li, J. Wang, and H. Yin, “DeepBinDiff: Learning Program-
Wide Code Representations for Binary Diffing,” in Proceedings of the
27rd Symposium on Network and Distributed System Security (NDSS),
2020.

[12] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovRE: Effi-
cient Cross-Architecture Identification of Bugs in Binary Code,” in
Proceedings 2016 Network and Distributed System Security Symposium.
Reston, VA: Internet Society, 2016, pp. 21–24.

[13] M. R. Farhadi, B. C. Fung, P. Charland, and M. Debbabi, “Binclone:
Detecting code clones in malware,” in 2014 Eighth International
Conference on Software Security and Reliability (SERE). IEEE, 2014,
pp. 78–87.

[14] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable
Graph-based Bug Search for Firmware Images,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications
Security - CCS’16. New York, New York, USA: ACM Press, 2016,
pp. 480–491.

[15] D. Gao, M. K. Reiter, and D. Song, “Binhunt: Automatically finding
semantic differences in binary programs,” in International Conference
on Information and Communications Security. Springer, 2008, pp.
238–255.

[16] J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun, “Vulseeker: A semantic
learning based vulnerability seeker for cross-platform binary,” ASE
2018 - Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, pp. 896–899, 2018.

[17] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[18] X. Hu, T.-c. Chiueh, and K. G. Shin, “Large-scale malware indexing
using function-call graphs,” in Proceedings of the 16th ACM conference
on Computer and communications security, 2009, pp. 611–620.

[19] H. Huang, A. M. Youssef, and M. Debbabi, “Binsequence: fast, accurate
and scalable binary code reuse detection,” in Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security,
2017, pp. 155–166.

[20] J. Jang, M. Woo, and D. Brumley, “Towards automatic software lineage
inference,” in 22nd USENIX Security Symposium (USENIX Security 13),
2013, pp. 81–96.

[21] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search
with GPUs,” IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–
547, 2019.

[22] U. Kargén and N. Shahmehri, “Towards robust instruction-level trace
alignment of binary code,” in 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2017,
pp. 342–352.

[23] W. M. Khoo, A. Mycroft, and R. Anderson, “Rendezvous: A search
engine for binary code,” IEEE International Working Conference on
Mining Software Repositories, pp. 329–338, 2013.

[24] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017,

Conference Track Proceedings. OpenReview.net, 2017. [Online].
Available: https://openreview.net/forum?id=SJU4ayYgl

[25] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[26] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International conference on machine learning. PMLR,
2014, pp. 1188–1196.

[27] X. Li, Q. Yu, and H. Yin, “Palmtree: Learning an assembly language
model for instruction embedding,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, 2021,
pp. 3236–3251.

[28] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,” in
International conference on machine learning. PMLR, 2019, pp. 3835–
3845.

[29] J. Lin, D. Wang, R. Chang, L. Wu, Y. Zhou, and K. Ren, “Enbindiff:
Identifying data-only patches for binaries,” IEEE Transactions on
Dependable and Secure Computing, no. 01, pp. 1–1, 2021.

[30] B. Liu, W. Li, W. Huo, F. Li, W. Zou, C. Zhang, and A. Piao, “αDiff:
Cross-version binary code similarity detection with DNN,” ASE 2018
- Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, pp. 667–678, 2018.

[31] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[32] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applica-
tions to software and algorithm plagiarism detection,” IEEE Transac-
tions on Software Engineering, vol. 43, no. 12, pp. 1157–1177, 2017.

[33] R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted and
packed malware,” IEEE Security & Privacy, vol. 5, no. 2, pp. 40–45,
2007.

[34] A. Marcelli, M. Graziano, X. Ugarte-Pedrero, Y. Fratantonio, M. Man-
souri, and D. Balzarotti, “How machine learning is solving the binary
function similarity problem.”

[35] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Querzoni,
“Safe: Self-attentive function embeddings for binary similarity,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2019, pp. 309–329.

[36] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[37] J. Ming, D. Xu, Y. Jiang, and D. Wu, “Binsim: Trace-based semantic
binary diffing via system call sliced segment equivalence checking,” in
26th {USENIX} Security Symposium ({USENIX} Security 17), 2017,
pp. 253–270.

[38] G. Myles and C. Collberg, “K-gram based software birthmarks,” in
Proceedings of the 2005 ACM symposium on Applied computing, 2005,
pp. 314–318.

[39] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” ACM Sigplan notices, vol. 42, no. 6,
pp. 89–100, 2007.

[40] T. of Bits. (2021) Github - McSema. [Online]. Available: https:
//github.com/lifting-bits/mcsema

[41] K. Pei, Z. Xuan, J. Yang, S. Jana, and B. Ray, “Trex: Learning
execution semantics from micro-traces for binary similarity,” arXiv
preprint arXiv:2012.08680, 2020.

[42] D. Peng, S. Zheng, Y. Li, G. Ke, D. He, and T.-Y. Liu, “How could neu-
ral networks understand programs?” arXiv preprint arXiv:2105.04297,
2021.

[43] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow, “Leveraging
semantic signatures for bug search in binary programs,” in Proceedings
of the 30th Annual Computer Security Applications Conference, 2014,
pp. 406–415.

[44] D. Pizzolotto and K. Inoue, “Identifying compiler and optimization level
in binary code from multiple architectures,” IEEE Access, vol. 9, pp.
163 461–163 475, 2021.

16

https://openreview.net/forum?id=SJU4ayYgl
https://github.com/lifting-bits/mcsema
https://github.com/lifting-bits/mcsema

[45] H. Rays, “IDA Pro,” https://www.hex-rays.com/products/ida/, May
2021.

[46] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019. [Online]. Available: http:
//arxiv.org/abs/1908.10084

[47] C. E. Shannon, “A mathematical theory of communication,” The Bell
system technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[48] P. Shirani, L. Collard, B. L. Agba, B. Lebel, M. Debbabi, L. Wang, and
A. Hanna, “Binarm: Scalable and efficient detection of vulnerabilities
in firmware images of intelligent electronic devices,” in International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 2018, pp. 114–138.

[49] Synopsys, “Open source security and risk analysis report,”
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/
rep-ossra-2022.pdf, 2022.

[50] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-first AAAI conference on artificial intelligence, 2017.

[51] P. Team, “Github - PyTorch Geometric,” https://github.com/pyg-team/
pytorch geometric, 2022.

[52] Transformers, “Github - Transformers,” https://github.com/huggingface/
transformers, 2021.

[53] H. Wang, W. Qu, G. Katz, W. Zhu, Z. Gao, H. Qiu, J. Zhuge, and
C. Zhang, “jtrans: jump-aware transformer for binary code similarity
detection,” in Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2022, pp. 1–13.

[54] H. Xiao, “bert-as-service,” https://bert-as-service.readthedocs.io, 2022.
[55] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural

Network-based Graph Embedding for Cross-Platform Binary Code Sim-
ilarity Detection,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security - CCS ’17. Dallas,TX,
USA: ACM Press, 2017, pp. 363–376.

[56] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song, “Spain:
security patch analysis for binaries towards understanding the pain and
pills,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 2017, pp. 462–472.

[57] J. Yang, C. Fu, X.-Y. Liu, H. Yin, and P. Zhou, “Codee: A tensor
embedding scheme for binary code search,” IEEE Transactions on
Software Engineering, 2021.

[58] S. Yang, L. Cheng, Y. Zeng, Z. Lang, H. Zhu, and Z. Shi, “Asteria: Deep
learning-based ast-encoding for cross-platform binary code similarity
detection,” in 2021 51st Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2021, pp. 224–
236.

[59] Z. Yu, R. Cao, Q. Tang, S. Nie, J. Huang, and S. Wu, “Order Matters:
Semantic-Aware Neural Networks for Binary Code Similarity Detec-
tion,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 01, pp. 1145–1152, 2020.

[60] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural Ma-
chine Translation Inspired Binary Code Similarity Comparison beyond
Function Pairs,” in Proceedings 2019 Network and Distributed System
Security Symposium. Reston, VA: Internet Society, 2019.

[61] Zynamics, “Bindiff,” https://www.zynamics.com/bindiff.html, 2021.

APPENDIX

A. Ablation Study on the Instruction Simplification

Fig. 14 shows the results of the ablation study on instruc-
tion simplification. Red bars indicate the distances between
the basic block embeddings with the instruction simplification,
and blue bars indicate the distances between the original basic
block embeddings. We carefully use source code lines of
DWARF (debugging with attributed record formats) informa-
tion to label basic block similarity. We randomly pick 10,000
similar block pairs and dissimilar block pairs from the XO,
XC, and XA testing datasets, respectively. With the help of

XO XC XA
0

2

4

6

8

10

Di
st

an
ce

<0.1

2.7 2.2

<0.1
1.5 1.4

Original Instructions
Instruction Simplification

(a) Similar Blocks

XO XC XA
0

2

4

6

8

10

Di
st

an
ce

8.5
7.6 8.1

9.9

7.8 8.3

(b) Disimilar Blocks
Fig. 14. Results of ablation study on the Instruction simplification. The blue
bars represent distances between the original basic blocks, and the red bars
represent distances between the blocks with instruction simplification.

instruction simplification, the distances between similar blocks
are brought closer (Fig. 14(a)), and dissimilar blocks are drawn
farther apart (Fig. 14(b)). For example, the average distance
between similar blocks reduces by 44.4%, and the average
distance between dissimilar blocks increases by 2.6% in the
XC task. This is because the instruction simplification refines
microcode sequences and increases the proportion of main
semantics, which improves our language model’s performance
on basic block similarity detection.

B. Vulnerability Details

We detail the vulnerabilities which are detected and
checked in the 1-day vulnerability detection.

1) 1-day Vulnerabilities: In Table VII, we list the firmware
and vendors to which these vulnerabilities belong. We find
that adjacent models of the same vendor usually have similar
vulnerable functions. For example, the adjacent models of
NetGear R6400, R6900, R7000, R7000P, and R8000 all con-
tain vulnerabilities CVE-2016-2182, CVE-2016-6303, CVE-
2016-8618, CVE-2016-8622, CVE-2018-1000301, and CVE-
2021-23840. We carefully analyzed the reason and found
that these firmware images use similar compilation chains
(GCC-3.5) and library dependencies, which easily package the
same vulnerable functions into the generated firmware images.
We have safely reported the discovered vulnerabilities in the
experiments and their patches to the corresponding vendors to
help fix them.

2) New Vulnerabilities: We use VulHawk to perform vul-
nerability detection in the latest projects and find a suspected
stack overflow in OpenSSL-3.1.0/ssl/ssl_lib.c. Fig
15 shows the vulnerability detail. The return type of strlen

1 char *SSL get shared ciphers(const SSL *s, char *buf, int size){
2 ...
3 int n;
4 c = sk SSL CIPHER value(clntsk, i);
5 n = strlen(c−>name); // Forced type conversion
6 if (n + 1 > size) {
7 ...
8 return buf;
9 }

10 strcpy(p, c−>name); // Overflow!
11 ...
12 }

Fig. 15. A suspected stack overflow vulnerability in OpenSSL-3.1.0.

function is size_of, while the type of n is int. When the
return value is over the upper bound of an integer (231 −

17

https://www.hex-rays.com/products/ida/
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2022.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/reports/rep-ossra-2022.pdf
https://github.com/pyg-team/pytorch_geometric
https://github.com/pyg-team/pytorch_geometric
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://bert-as-service.readthedocs.io
https://www.zynamics.com/bindiff.html

TABLE VII. DETAILS OF 1-DAY VULNERABILITY DETECTION.

CVE Vulnerable function Confirmed # Affected firmware
1 CVE-2015-1789 X509 cmp time 3 TP-Link: TL-WAR458, TL-WVR300, TL-R473;
2 CVE-2015-0286 ASN1 TYPE cmp 3 TP-Link: TL-WAR458, TL-WVR300, TL-R473;
3 CVE-2016-0797 BN dec2bn 4 TP-Link: Deco M4, TL-WAR458, TL-WVR300, TL-R473;

CVE-2016-0797 BN hex2bn 4 TP-Link: Deco M4, TL-WAR458, TL-WVR300, TL-R473;
4 CVE-2016-2176 X509 NAME oneline 4 TP-Link: Deco M4, TL-WAR458, TL-WVR300, TL-R473;
5 CVE-2016-0798 SRP VBASE get by user 4 TP-Link: Deco M4, TL-WAR458, TL-WVR300,TL-R473;

6 CVE-2016-2182 BN bn2dec 14 D-Link: DIR-842; NetGear: R7000, R7000P, XR300, EX7000, R8000, R6400,
R6900, R8500, R6700; TP-Link: Deco M4, TL-WAR458, TL-WVR300, TL-R473

7 CVE-2021-23840 EVP DecryptUpdate 17
D-Link: DIR-842; NetGear: X7300, RBR50, RBS40, RBS20, RBR20, R7000,
R7000P, XR300, EX7000, R8000, R6400, R6900, R8500, R6700, EX6150;
TP-Link: Deco M4, TL-WAR458, TL-WVR300, TL-R473;

8 CVE-2016-6303 MDC2 Update 10 D-Link: DIR-842; NetGear: R7000, R7000P, XR300, EX7000, R8000, R6400,
R6900 R8500, R6700;

9 CVE-2016-8622 curl easy unescape 10 NetGear: R7000, R7000P, XR300, EX7000, R8000, R6400, R6900, R8500,
R6700; TP-Link: Deco M4

10 CVE-2018-1000301 Curl http readwrite headers 9 NetGear: R7000, R7000P, XR300, EX7000, R8000, R6400, R6900, R8500, R6700;

11 CVE-2016-8618 alloc addbyter 10 D-Link: DIR-842; NetGear: R7000, R7000P, XR300, EX7000, R8000, R6400,
R6900, R8500, R6700;

12 CVE-2021-22924 create conn 1 D-Link: DIR-842;

1), n may be negative because of an integer overflow.
The expression n+1>size is not satisfied, and the ex-
ecution of strcpy will result in a stack overflow. The
SSL_get_shared_ciphers function is an exported func-
tion in libssl.so of OpenSSL-3.1.0 project. When a code
calls this function directly, it represents a security issue.

n = strlen(s)
if (n+1 > size){…}
strcpy()

1

2

3

4

5

6

7

8

// Psuedocode

O0-Clang-x86_64

mov rax, [rbp+var_40]

mov rdi, [rax+8]

call strlen

mov [rbp+var_48], eax

mov eax, [rbp+var_48]

add eax, 1

cmp eax, [rbp+var_1C]

jle loc_7722

n = strlen(s)
if (size > n) strcpy()
…

// Psuedocodemov r13, [rbp+8]

mov rdi, r13

call strlen

mov r15, rax

cmp r14d, r15d

jle loc_50C5

1

2

3

4

5

6

O3-Clang-x86_64

n = strlen(s)
if (n >= size){…}
strcpy()

// Psuedocode

Fig. 16. The binary code of the discovered vulnerability in OpenSSL-3.1.0.

When coding this patch, we found an interesting issue.
We fix the type of n into size_of, the binary file from
O3-Clang-x86-64 is fixed, while the binary file from
O0-Clang-x86-64 is still at risk of overflow. Fig. 16
shows that Clang optimizes n+1>size to n>=size when
compiling with the O3 option, eliminating the possibility of
overflow due to n+1 when n equals 232 − 1. Therefore, the
fixed code modifies the type of n to size_of and changes
the expression n+1>size to n>=size.

Finally, we have safely reported the discovered vulnera-
bilities in our experiments to the corresponding vendors and
developers.

18

	Introduction
	Background
	Problem Definition
	Entropy theory

	Design
	Intermediate Representation Function Model
	Intermediate Representation
	Language Model
	Pre-training Tasks
	Function Embedding Generation

	Entropy-based Adapter
	Entropy-based Binary Analysis
	Entropy-based Adapter layer

	Progressive Search Strategy
	Function Embedding Search
	Similarity Calibration

	Evaluation
	Implementation and Experiment Setup
	Datasets
	Baselines

	One-to-one Comparison
	One-to-many Search
	Many-to-many Matching
	Runtime Efficiency
	Ablation Study
	File Environment Identification
	1-day Vulnerability Detection from Firmware

	Discussion
	Related Work
	Conclusions
	References
	Appendix
	Ablation Study on the Instruction Simplification
	Vulnerability Details
	1-day Vulnerabilities
	New Vulnerabilities

