
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

SPFuzz: A Hierarchical Scheduling
Framework For Stateful Network
Protocol Fuzzing
CONGXI SONG1, BO YU1,XU ZHOU1,QIANG YANG1.
1College of Computer, National University of Defense Technology, Changsha 410073, China

Corresponding author: Bo Yu (e-mail: 526905729@qq.com) Xu Zhou (e-mail: zhouxu@nudt.edu.cn) Qiang Yang(e-mail:
q.yang@nudt.edu.cn).

This work is partially supported by the The National Key Research and Development Program of China (2016YFB0200401), by program
for New Century Excellent Talents in University, by National High-level Personnel for Defense Technology Program
(2017-JCJQ-ZQ-013), by the HUNAN Province Science Foundation 2017RS3045.

ABSTRACT In recent years, the fuzzing technology is widely used to detect software vulnerabilities owing
to the coverage improvement in the target program and the easiness of use. However, It’s less efficient to
fuzz stateful protocols due to difficulties like maintaining states and dependencies of messages. To address
these challenges, we present SPFuzz, a framework for building flexible, coverage-guided stateful protocol
fuzzing. We define a language in SPFuzz to describe protocol specifications, protocol states transitions
and dependencies for generating valuable test cases, maintaining correct messages in session states and
handling protocol dependencies by updating message data in time. SPFuzz adopts a three-level mutation
strategy, namely head, content and sequence mutation strategy to drive the fuzzing process to cover more
paths, together with the method to randomly assign weights to messages and strategies.
We use the following metrics to evaluate the performance of SPFuzz and other frameworks upon three
protocol implementations, i.e. Proftpd, Oftpd, and OpenSSL, which are three-granularity coverages specif-
ically function, basic block and edge. In experiments, the SPFuzz framework outperforms the existing
stateful protocol fuzzing tool Boofuzz by an average of 69.12% in three granularities coverage tests. This
demonstrates that SPFuzz has ability to explore more and deeper paths of the target program. We further
triggered CVE-2015-0291 in OpenSSL 1.0.2 with SPFuzz, which proves the validity and utility of our
framework.

INDEX TERMS AFL, coverage, fuzzing, network protocol, software security

I. INTRODUCTION

Network protocols, which describe the format of network
messages and how network endpoints communicate between
layers, always play a key role in all network-related fields
[1]. However, nowadays, they become breakpoints of remote
attacks toward systems over the Internet by exploiting numer-
ous vulnerabilities in their implementations. Therefore, it is
urgent for us to pay close attention to the security risks of the
network protocol. To mitigate such a situation, it is extremely
important to build an effective method to discover flaws and
weaknesses in network protocols [2]– [4].

In recent years, the fuzzing technology is widely used in
protocol vulnerability detecting [5] [37]. During the fuzzing
process, the system is fed with random and unexpected data
to improve the coverage of target programs [6]. Based on

this situation, some fuzzing tools are designed for network
protocols with the consideration of protocol features.

Peachfuzz [7] supports distributed multi-protocol fuzzing.
It parses responses and is able to distinguish between data
types and vulnerabilities. SNOOZE [8] is a fuzzing tool
designed for stateful protocols. It utilizes the Extensible
Markup Language (XML) [32] to describe the protocol spec-
ifications and generates test cases according to the defined
fuzzing scenario. Boofuzz [9] is a Python-based fuzzing
framework extended from Sulley [18]. It features maintaining
states and identifying failures. The framework implements
primitives for describing different types of message fields and
mutation libraries for producing test cases. However, all the
above fail to handle dependencies.

Leveraging the generation method, Kitagawa designed the
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Aspfuzz [10] to generate test cases based on the Request
For Comments (RFC) [35]. In 2010, Gorbunov designed the
AutoFuzz [11] framework, which firstly extracts finite state
machines between clients and servers, and then the GMS
template to find the valuable message fields. AutoFuzz marks
these fields, and does experiment with File Transfer protocol
(FTP) [23]. However, it’s unable to process encrypted data.
The main perspective of the SecFuzz proposed in 2012 is
to define the mutation strategy as three levels, i.e. sequence,
payload and field. However, mutation strategies here in each
level is too monotonous. The SecFuzz can cope with encryp-
tion mechanisms used in Internet Key Exchange protocol
(IKE) [36] by searching the client’s logs. In 2015, Ruiiter
[12] proposed a method to extract state transition using the
Learnlib state machine, and established an input alphabet.
The test harness initializes the encryption key by sending
“ClientHello” message and storing key in response message.
This was tested on nine implementations of the Transfer layer
security (TLS) [24] protocol. Novickis also took a similar
approach upon OpenVPN [6]. Others used statistical and
intelligent methods to improve the performance of network
protocols fuzzing [1].

Munea [2] summed up five criteria for the classification of
protocol fuzzing through research in 2015 as follows:

• Intelligence level
• Method of producing test cases
• Method of detecting vulnerabilities in a server
• Ability of storing the previous states of sessions
• Method of sending inputs to a server
According to the above criteria, we investigate recent

fuzzing tools and find the following:
• Most of these approaches spend few efforts on the self-

learning of protocol specifications.
• Test cases usually tend to be generated by mutating

real messages rather than producing inputs based on
protocol standards to improve fuzzing efficiency.

• Most of these approaches ignore technologies such as
dynamic memory analysis when detecting vulnerabili-
ties in a server because of unavoidable overhead, and
analyze vulnerabilities manually.

• The ability to store previous states of sessions is neces-
sary for fuzzing stateful protocols.

• As to the last criteria, one way is keeping the correct
order of message sequence while sending inputs, and
then mutating message data. The other is mutating both
the order and the data.

Researchers should take care of these criteria to tradeoff be-
tween the ability to discover vulnerabilities and the overhead
caused by tools [10] [13].

A. MAIN CHALLENGE
1) States in the stateful protocol fuzzing are hard to maintain
Stateful protocol fuzzing is much more complex than state-
less fuzzing. For example, the inputs of Hypertext Transfer
Protocol (HTTP) [33] are independent, regardless of state

retention, while fuzzing a stateful protocol such as FTP re-
quires the fuzzer maintaining a state machine which contains
information of how the states are transferred. Then the fuzzer
establishes all previous states and keeps the connection based
on the state machine to fuzz a target state [15].

2) Dependencies are hard to handle
For most of stateful network protocols, there are intra- and
inter-message dependencies. For example, the length field or
the checksum field is determined by the content, which is
a type of intra-message dependencies. The pre-order mes-
sages carry the authentication or the encryption information
required by the subsequent messages, and this produces
dependencies between them, which is a type of inter-message
dependencies. These dependencies impact whether we can
produce valid test cases when fuzzing.

3) Path coverage is hard to improve
Many frameworks generate test cases by formulating some
templates according to the specifications of protocols. This
method with manual intervention will make a lot of paths not
be covered, while hidden vulnerabilities may exist there [14].

B. SPFUZZ FRAMEWORK
In this paper, we propose SPFuzz, a framework that can
maintain the session states and the connections of network
while fuzzing. Meanwhile it solves the problem of handling
message dependencies. What’s more, a three-level mutation
strategy i.e. head, content and sequence, is used to improve
the coverage of fuzzing.

The SPFuzz framework defines a description language to
describe the specifications, the state transitions, and depen-
dencies of protocols. The interpreter translates description
files into message entities and message sequences that the
framework can recognize.

The SPFuzz framework formulates a three-level muta-
tion strategy including head, content and sequence muta-
tion strategy. The three-level strategy combines both the
knowledge-driven mutation from the protocol specification
and the American Fuzzy Lop(AFL) [17] random full-strategy
mutation. What’s more, SPFuzz leverages the mutation abil-
ity of AFL to generate test cases randomly, which avoids
descripting protocol specification with too many details.

Intra- or inter-message dependencies are handled by up-
dating corresponding fields of message.

According to different message characteristics, both the
choices of message to be fuzzed and the mutation strategy
are given different weights, which produce different selective
probabilities for making the fuzzing process traverse more
paths and prone to discover vulnerabilities.

The framework schedules the whole fuzzing process.
Meanwhile, it communicates with the AFL engine and the
target server. Also, it monitors response messages of server
and collects traces, all of which are fed back to test cases
generation.
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C. CONTRIBUTION
We make the following contributions in this work:

1) We define a description language which describes mes-
sage specification, state transition and dependencies.

2) We design a three-level mutation strategy (head, con-
tent and sequence).

3) We implement a framework called SPFuzz to improve
coverage with AFL features and weight selection.

4) We conduct experiment, the results show SPFuzz has
a higher coverage than Boofuzz and AFL. Also, the
SPFuzz framework triggers a known vulnerability.

D. PAPER ORGANISATION
The rest of this paper is organized as follows. Section II
gives the background of the fuzzing technology. Section III
presents the overview of the SPFuzz framework. The descrip-
tion language is defined in Section IV. Section V introduces
the three-level mutation strategy. The scheduling details of
SPFuzz is shown in Section VI. Followed by evaluation
results are summarized in Section VII. Section VIII discusses
some limitations of the current design and the future research
direction. Section IX concludes this paper.

II. BACKGROUND
A. FUZZING TECHNOLOGY
Fuzzing is a software testing technique that looks for bugs
by feeding random inputs into target programs so as to
cover as many code paths as possible. Fuzzing tools can be
divided into "dumb mode" and "intelligent mode" according
to whether it understands the characteristics of the target
program [27]– [30]. While the input of fuzzing is either
generated or mutated, i.e. making new inputs based on a
specification or mutating the existing inputs. The second
approach is widely adopted in practice.

In some of programs, previous messages received is stored
and used to affect the processing of the current message.
This is called a "stateful protocol" [34]. The stateful network
protocol fuzzing is different from the file fuzzing. First,
we need to consider the protocol specification to generate
valuable inputs; Second, the transmission of messages is
stateful, and the input has dependencies; Third, the order of
test cases sending to the target may lead to different results.
For example, in the FTP protocol [23](Fig.1), according to
the correct order, the first message of sequence is "USER",
followed by a corresponding "PASS" message. After the
connection is established, data can be transmitted with a
"STOR" or "RETR" message. If the previous states are not
maintained, the subsequent fuzzing is meaningless.

In addition, there are some problems in the stateful net-
work protocol fuzzing process. First, the states of the target
should be recorded by a monitor. If a crash happens or the
fuzzing tool loses connection with the target, the monitor logs
the crash and feeds traces of process back to the fuzzing tool;
Second, handling dependencies in messages is a challenge,
such as the "Heartbeat" message of the TLS protocol [24]

FIGURE 1. The stateful protocol fuzzing process example, FTP

whose length field is determined by the length of content
field.

Because of above challenges and difficulties, it’s worthy to
study the efficient fuzzing of stateful network protocols.

B. INTRODUCTION OF AFL
American Fuzzy Lop(AFL) [17] is a popular off-the-shelf
fuzzing tool. It depends on mutation strategies to achieves
high coverage. AFL maintains a queue which stores input
files as seeds for mutating each cycle. In addition, AFL uses
five strategies to generate a large number of test cases, and
instruments the target program with a bitmap to compute
coverage. The proposed SPFuzz framework leverages the
mutating characteristics of AFL to fuzz the content field of
a message.

III. FRAMWORK OVERVIEW
In order to solve the challenges in fuzzing stateful protocols,
we design a powerful framework called SPFuzz, which con-
tains not only a description language for specifications of
protocols, but also a three-level fuzzing strategy. We imple-
ments a framework with functional components to schedule
the fuzzing process.

A. MAIN COMPONETS
The overview of SPFuzz is shown in Fig.2, which consists of
the following several parts:

1) Description file

It covers protocol specification description including the
name of messages, the specifications of each field in the
message and dependencies, and the protocol state transition
description. We define a description language which is de-
signed based on the well-format function of Boofuzz and
make some extensions to adapt to our framework.
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FIGURE 2. The overview of the SPFuzz framework

2) Interpreter
The interpreter is responsible for translating the description
language, specifically the protocol specification description
file into message entities to produce test cases, and the state
transition description file into a message sequence.

3) Core scheduler
The core scheduler schedules the hierarchical fuzzing pro-
cess using a three-level strategy, namely head, content and
sequence. Meanwhile, it is responsible for handling depen-
dencies and communications.

4) Mutation engine
We leverage AFL as the content mutation engine that pro-
duces test cases based on original seeds and feeds test cases
back to the core scheduler.

5) Target server
The target server receives test cases and generates corre-
sponding responses. These response messages are returned
to the core scheduler along with traces of the target process
for follow-up analyses.

B. WORK FLOW
The work flow of SPFuzz is shown below:

1) Users define the protocol specification file and the
protocol state transition file.

2) The interpreter translates the description files into mes-
sage entities and a message sequence.

3) The SPFuzz framework starts a round of fuzzing pro-
cess.

4) The SPFuzz framework randomly selects a message for
testing in the current round with the message weight.

5) The SPFuzz framework gets the whole message se-
quence of the current message which is used to build
previous states. And then it updates the strategy weight
according to the message traits, e.g. it would to select
the head strategy for those messages have many head
fields.

6) The SPFuzz framework randomly selects a strategy
from three types (head, content and sequence) with
strategy weight.

7) The SPFuzz framework performs corresponding strat-
egy mutation on the message and receives test cases
from AFL if the content mutation strategy is adopted.

8) The SPFuzz framework formats test cases.
9) The SPFuzz framework constructs the states before the

current message according to the message sequence.
10) The SPFuzz framework sends test cases to the target

server.
11) The target server sends response messages and traces,

and then the framework analyzes and feeds information
back to the next round of fuzzing.

12) The SPFuzz framework is reset for the next fuzzing
round.

IV. DESCRIPTION LANGUAGE DEFINITION AND
TRANSLATION
The SPFuzz framework has to understand the specification
of the network protocol being fuzzed including the format
of message in protocol and the message sequence to build
a session. This knowledge can be obtained from the RFC.
Therefore, we define a description language extended from
that of Boofuzz. The description language comprises the
protocol specification description and the protocol state tran-
sition description. Not only the format of the protocol, but
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FIGURE 3. An example of the protocol specification description

FIGURE 4. An example of the protocol state transition description

also the dependencies intra- and inter-message in the protocol
are described in the specification description file. Compared
with the description languages of other tools [7]– [9], the
SPFuzz framework makes a coarse-grained description and
does not define each field of a message, which decreases the
manual intervention.

A. PROTOCOL SPECIFICATION DESCRIPTION
Fig.3 illustrates the format of two messages: "USER" and
"PORT" of the FTP protocol. A complete message descrip-
tion is in three levels. The first level is "request", which
declares the name and the message weight in protocols. The
message weight here indicates how important the message
is in the protocol. It has influence on the probability of the
current message to be fuzzed in all messages of the protocol.
The second level is "block", which cuts the "request" into
head field and content field for selecting different mutation
strategies. The head block is represented in description file
as "s_block_start("HEAD")" and the content block is repre-
sented as "s_block_start("CONTENT")". The third level is
"primitive", which is responsible for dividing each field in a
head block. The fields that are worthy to fuzz are represented
by "s_string", while the meaningless fields such as separator
and padding are denoted by "s_delim" and "s_static".

B. PROTOCOL STATE TRANSITION DESCRIPTION
Fig.4 is part of protocol state transition description depicting
the process of how to move from initial state to the current
state step by step, where "s_connect" is the transfer action.

The whole sequence of messages is constructed according to
the link order.

C. PROTOCOL DEPENDENCY REPRESENTATION
There are two kinds of dependencies in protocol. One is
intra-dependency that the dependency between fields within
a message, e.g. the length field which is determined by
the content field. The other is inter-dependency that the
dependency between messages, e.g. in some test cases whose
data is controlled by pre-order messages. Sometimes these
dependencies affect the generation of valid test cases.

Accordingly, SPFuzz defines two kinds of dependency in
protocol specification description.

1) Dependency representation between messages
The inter-message dependencies refer to these between mes-
sages between the pre-order message and the subsequent
message, and between the sent message and the response
message. The representations are shown as below:

• outDep(type,msg1,field1,msg2,field2)
• resDep(type,msg1,field1,res_type,res)

Where "type" indicates the type of dependency, "msg1" and
"field1" indicate the message name and field name of pre-
order messages, and "msg2" and "field2" indicate the same
information of subsequent messages.

2) Dependency representation within a message
The intra-message dependency representation is shown as
below:

• inDep(type,msg1,field1,field2)
Where "type" indicates the type of dependency, "msg1" indi-
cates the message name, and "field1" and "field2" represent
two dependent fields.

D. TRANSLATION OF DESCRIPTION FILE
As is shown in Fig.5, the two description files are translated
by the interpreter into an accessible format for the other
parts of the SPFuzz framework. The interpreter extracts the
specifications of all messages from the protocol specification
file and generates message entities. It also extracts informa-
tion from the state description file during the state transition
process and collects the preamble messages of the current
fuzzed message. These preamble messages are uniformly
placed in the message sequence for state construction.

V. HIERARCHICAL FUZZ MUTATION STRATEGY
SCHEDULING
Considering the internal structure of messages and the con-
nection between them, the mutation strategies for fuzzing
thoroughly are designed hierarchically, which covers three
levels including head, content and sequence.

A. HEAD MUTATION STRATEGY
The header part adopts a customized strategy according to the
semantics and specifications of message header fields shown
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FIGURE 5. The input and output of the interpreter

TABLE 1. Items of head mutation strategy

Field class Type of data Strategy
length integer random number

large number
zero
null

marker fixed integer or string random value
special value
zero
null

version integer in range within-range random number
out-of-range random number
zero
null

command string in range within-range random string
out-of-range random string
zero
null

in the Table 1. After analyzing RFC document manually,
we found that header fields can be sorted into the following
categories: "length", "marker", "version" and "command".
Thus the mutation policies could select headers within the
normal value range, or with the special value or with the
illegal value such as null, zero, a large number and a string
whose length is out of bounds.

For example, the change within normal range policy will
mutate a header of "USER xxx", while it may also be mutated
into "eRD2 xxx" by the special value selection or "0 xxx" by
the illegal value selection.

B. CONTENT MUTATION STRATEGY
Data in content fields of messages is usually random and
messy. Even so, with the help of AFL, the SPFuzz frame-
work could generates test cases for content fields randomly
which is used to perform a full-strategy mutation. AFL uses
strategies including bitflip, arithmetic, interest, dictionary
and havoc, and its engine tends to choose one that discovers
new paths. Due to the excellent performance, we can lever-

age AFL to achieve high coverage on target programs. We
specially tested the SPFuzz framework in content mutation
mode, which is using the full-strategy mutation of AFL. The
result will be explained in Section VII. In addition, there are
dependencies between some header fields and content fields,
such as length and type fields. The header fields should be
updated accordingly after renewed content data.

C. SEQUENCE MUTATION STRATEGY
In order to maintain the structural soundness of messages,
we mess up the order of message sequence and this can also
improve coverage. The implementation of sequence mutation
strategy is inserting the currently selected message into a
random position of the correct message sequence to change
the direction of state transition.

VI. SPFUZZ SCHEDULING FRAMEWORK
IMPLEMENTATION
Fig.6 shows the components of the SPFuzz framework and its
workflow. The most important component is the core sched-
uler which is responsible for global scheduling. The core
scheduler communicates with the AFL engine and the target
server, and receives description files from the interpreting
part. The relationship is illustrated in Fig.2.

A. MUTATION SCHEDULER
The mutation scheduler comprises three schedulers for mu-
tation according to the three-level mutation strategy. Basi-
cally, the head mutation scheduler saves values produced by
the head mutation strategy (Table 1) into dictionaries. The
content mutation scheduler produces test cases got from the
AFL engine, and the sequence mutation scheduler distorts the
correct message sequence.

The mutation scheduler will select a mutation strategy and
a message to be fuzzed randomly, and the random choices are
taken with message weight and strategy weight. The message
weigh is defined in section IV, and the strategy weight
indicates which strategy is easier to be selected. After that,
it starts the corresponding scheduler for fuzzing.

B. FORMAT HANDLER
The format handler is used to rearrange the format of test
cases or heads after mutation. It is necessary to stitch header
fields with content fields and make them a integrate testcase,
because the mutation scheduler mutates content or head
separately.

C. DEPENDENCY HANDLER
The dependency handler deals with dependencies when it
receives a complete test case. The handler replaces the header
field that violates dependencies with correct data.

Dependencies within message are handled by analyzing
whether the relevance of fields is broken, e.g. whether the
length of content is updated with a changed content data
length. Dependencies between two messages are handled
when current test case is depend on previous messages.
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FIGURE 6. The components of SPFuzz framework and how the framework works.

The handler reads data from a cache, which stores previous
messages temporarily to catch relevant data.

D. COMMUNICATION SCHEDULER
The communication scheduler consists of a socket and a
traffic state monitor. It is a bridge to send and receive mes-
sages from the target server. The scheduler forks a subprocess
for AFL continuously that provides test cases which are
transmitted back to the mutation scheduler in a pipe way.
After being mutated and being formatted, these messages are
scheduled and sent to the target server. Then the target server
returns response messages and traces of processes, which
will be fed back to the mutation scheduler to generate more
meaningful test cases. The traffic monitor always listens to
the response messages from target. If the response message
does not come back in time, the current fuzzing round will be
interrupted and skipped into next round. This will save more
time for for more valuable fuzzing.

VII. EVALUATION
There are two metrics to evaluate the performance of fuzzing
tools. One is triggered software crashes, either from known
or new vulnerabilities. The other is path coverage of target
programs. The path coverage indicates how many paths are
covered in target programs. In network protocol fuzzing, no
previous work uses coverage-based method, and we take both
coverage-based measurement and triggering crashes in this

paper. We evaluate the coverage of two implementations of
the FTP protocol and the TLS protocol in three granularities,
i.e. the function coverage, the basic block coverage and
the edge coverage. Besides, we reproduce the CVE-2015-
0291 [20] vulnerability of OpenSSL to prove the validity and
utility of SPFuzz.

A. EXPERIMENT SETUP
All of our experiments run on a computer with 8GB memory
and 64-bit Ubuntu 16.04 LTS. The experiments are carried
out on Proftpd 1.3.5 [25], Oftpd 0.3.7 [26] and OpenSSL
1.0.2 [22]. These three target servers are deployed on a
lightweight Debian-i386 2.6.32-5-686 virtual machine.

The environment configuration steps are as follows:
1) Deploy the server of protocol on the Debian virtual

machine and configure them.
2) Construct the message specification and state transition

description file for producing test cases.
3) Start the server to accept the responses and record the

traces.
4) Run the framework to fuzz the target.

B. EVALUATING THREE-GRANULARITY COVERAGE
We measure the coverage in three granularities: the function
coverage, the basic block coverage and the edge coverage.
The function coverage is the proportion of the actually ex-
ecuted functions driven by test cases over the total number
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TABLE 2. Three types of coverage produced by Boofuzz, SPFuzz/C and SPFuzz/F on Proftpd, Oftpd and OpenSSL (SPFuzz/C means SPFuzz in content mode
with AFL and SPFuzz/F means SPFuzz in full mode with all mutation strategies)

Proftpd Oftpd OpenSSL

Boofuzz
Function coverage 26.56% 28.23% 8.52%
Basic block coverage 14.86% 26.55% 8.80%
Edge coverage 7.13% 10.58% 2.05%

SPFuzz/C
Function coverage 29.46% 33.67% 14.13%
Basic block coverage 17.03% 34.74% 10.67%
Edge coverage 8.16% 13.73% 2.11%

SPFuzz/F
Function coverage 35.48% 58.50% 17.60%
Basic block coverage 20.32% 54.20% 14.40%
Edge coverage 9.00% 15.86% 2.38%

of a program. This also pertains to basic blocks for the basic
block coverage and edges between two basic blocks for the
edge coverage.

In order for that, the static analysis is firstly applied to bin
files to obtain the total number of functions, basic blocks
and edges of a program with the help of IDA [31], and the
dynamic analysis to get the addresses in the trace files, which
determines the number of actually executed functions, basic
blocks and edges, is adopted as well.

The FTP protocol experiment is carried upon Proftpd and
Oftpd. For sake of fairness, we only use “USER”, “PASS”,
“SYST”, “PORT”, “LIST”, “CWD”, “STOR”, “RETR” and
“QUIT” messages to produce test cases in this experiment,
and both Boofuzz and SPFuzz initialize messeage sequence
based only on the mentioned messages above for testing. The
OpenSSL experiment chiefly focuses on handshake messages
in TLS. Table 2 shows the experimental results of three
fuzzing tools executing the same message sequence, where
the SPFuzz/C indicates the SPFuzz in content mode, which
only uses the content mutation strategy based on the AFL
engine, and the SPFuzz/F indicates the SPFuzz in full mode
with all mutation strategies.

We test three frameworks of three-granularity for two
hours, and compare the test results. Since the calculation is
based on bin file of target server and not all message types
are covered in the test, all coverages keep a relatively low
level, while the coverage values of Boofuzz are even lower
than the others. The SPFuzz/C leverages AFL and improves
the coverage by generating random test cases. However,
some paths are still not covered without head mutation and
sequence mutation. This is proved by the SPFuzz/F whose
function coverage increases to 35.48%, basic block coverage
to 20.32% and edge coverage to 9.00% on Proftpd. Mean-
while, the three types of coverage reach 58.5% and 54.20%
and 15.58% on Oftpd. The results highlight that the SPFuzz/F
has better ability to find more paths on two implementations
of FTP. Also, on OpenSSL, SPFuzz/F outperforms Boofuzz
by 17.60%, 14.40% and 2.38% in three-granularity cover-
ages.

As the fine-grained edge coverage blends contextual infor-
mation, we further compare and analyze its change of three
server implementations over time, which are shown in Fig. 7,
Fig. 8 and Fig. 9.

In the Proftpd experiment as shown in Fig. 7, the edge

coverage of Boofuzz holds at around 5% in the first 30
minutes, then the value jumps to 7%. In contrast, SPFuzz/C
surpasses 8% in 30 minutes due to the randomness of AFL,
and SPFuzz/F reaches 9.00%.

In the experiment of Oftpd as shown in Fig. 8, the coverage
of Boofuzz keeps at 10.58% after 30 minutes, while the
coverage of SPFuzz/C stays at 13.73% after 40 minutes, and
the SPFuzz/F strides over 15% rapidly and rises steadily.

Because of the complexity of OpenSSL, all types of
coverage of three tools are very low as shown in Fig. 9.
Edge coverage of Boofuzz stays at 2.05%. The coverage of
SPFuzz/C is 2.11% and the coverage of SPFuzz/F is 2.38%.
The jump appears around 70 minutes which indicates some
mutations cover serveral new paths.

The mechanism of the Boofuzz framework is to mutate
the constructed message sequence according to the muta-
tion dictionary inside the framework. Therefore, the fuzzing
process has to spend a lot of time on traversing the dictio-
nary, and then enters next round of new message. This is
monotonous mutation always tries to establish the preamble
states covering the same paths and thus is unlikely to find
more interesting paths. SPFuzz/C leverages AFL to mutate
the content fields of messages. Since AFL cannot maintain
the states of protocol fuzzing, we reconstruct the preamble
states based on the specific message sequence, and generate
the test cases. However, simply mutating the content field
content without any knowledge of the protocol leads to
numerous meaningless test cases. The SPFuzz/F with three
mutation strategies and the ability of handling dependencies
overcomes the above drawbacks and achieves better results
than the other two.

C. TRIGGERING CVE-2015-0291
1) CVE-2015-0291
The transfer layer security (TLS) [21] protects the security
and integrity of sessions in network. Building a handshaking
process through exchanging keys and certifications, encrypt-
ing data and transferring in application layer is considered
secure. The OpenSSL is an implementation of TLS and
the CVE-2015-0291 [20] is detected in its 1.0.2 version.
This vulnerability causes a denial of service by replacing an
invalid signature algorithms extension in the “ClientHello”
message during a re-negotiation.
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FIGURE 7. The change of edge coverage of Proftpd over time (the horizontal axis indicates time in minutes)

FIGURE 8. The change of edge coverage of Oftpd over time (the horizontal axis indicates time in minutes)

FIGURE 9. The change of edge coverage of OpenSSL over time (the horizontal axis indicates time in minutes)

2) Process of triggering the vulnerability

We leverage the SPFuzz framework to reproduce CVE-2015-
0291 by monitoring handshake protocol in TLS with the help
of both the content and the sequence mutation strategies.
We describe the specification of handshake messages and
select the fuzzable field such as "client_random", "premas-
ter_string" and "signature_algorithms".

During handshaking, the client and the server generate
random values which is used to produce the content of sub-

sequent messages. All messages in the handshaking process
are required to compute their hash values. The length field of
corresponding fields has to keep updating and it is difficult to
handle the complex intra- and inter-message dependencies.
We overcome these challenges by describing these depen-
dencies in our language, caching the message during hand-
shaking and leveraging the existing library for encryption
in TLS. Finally, CVE-2015-0291 is triggered which proves
the validity and utility of the SPFuzz framework. However,
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compared with SPFuzz, BooFuzz fails to trigger the CVE-
2015-0291 because it doesn’t have ability to handle the
dependencies in protocol.

VIII. LIMITATION AND FUTURE WORK
Although the SPFuzz improves program coverage when com-
pared to existing tools, there are some limitations as well as
future improvements.

A. MESSAGE SPECIFICATIONS CANNOT COVER ALL
SITUATIONS
Currently, the protocol specification description file, the pro-
tocol state transition description file and the states con-
struction from RFC have to be processed by hand. This is
labor-intensive and is not scalable. It is quite appreciable
to make this step automatic and intelligent, e.g. extracting
protocol specifications from RFC directly and ensuring the
correctness at the same time.

B. APPLICATION IN COMPLEX PROTOCOLS
It is difficult to fuzz proprietary protocols and other com-
plex protocols without protocol specifications and source
code. Focusing on these protocols and designing an universal
method are the directions for further efforts.

C. ENCRYPTION ISSUES IN THE PROTOCOL
Although the SPFuzz framework triggers a known OpenSSL
vulnerability, the encryption problem still challenges stateful
protocol fuzzing unless we have deep knowledge of complex
encryption algorithms used in protocols.

IX. CONCLUSION
In summary, this paper tries to conquer the challenges of
fuzzing stateful protocols which are maintaining the states,
handling dependencies, and improving fuzzing coverage. To
achieve it, a description language is defined for not only
describing the specification of protocol, the state transition
of protocol, and dependencies to generate fuzzing test cases
and maintain the session states, but also handling intra- and
inter-message dependencies. Besides, the three-level strat-
egy (head, content and sequence), and assigning weights to
messages and strategies randomly improve the coverage of
protocol fuzzing greatly. This helps explore more deeper
paths.

Based on the mentioned above, the SPFuzz framework is
designed. It schedules the three-level mutation strategy and
generates high coverage test cases combining with AFL. The
framework can also communicate with AFL and the target
server, transmit test cases, collect traces generated by target
processes and feed them back to AFL. In experiments, the
SPFuzz framework outperforms the existing stateful protocol
fuzzing tool Boofuzz by an average of 69.12% in three
granularities coverage tests on two implementations of FTP,
i.e. Proftpd, Oftpd and OpenSSL. It further triggers CVE-
2015-0291 to show the validity and utility.
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