Sabotaging the System Boundary: A Study of the Inter-boundary

Vulnerability

Pengfei Wang®*, Xu Zhou and Kai Lu“

“College of Computer, National University of Defense Technology, Changsha 410073, China.

ARTICLE INFO

Keywords:

Inter-boundary vulnerability
System boundary

Shared memory bug
Real-world case investigation
Double-fetch vulnerability

ABSTRACT

The hierarchy theory is the foundation of the modern computer system design. However, the inter-
action part between different system layers is usually the weak point of the system, which tends to
have security flaws. When communicating across the system boundary, failure to enforce the required
synchronization in the shared memory can cause data inconsistency of the communication partners.
Especially when there is a privilege gap between different boundary sides, such data inconsistency
can lead to security vulnerability and sabotage the trust boundary. In this paper, we propose the con-
cept of inter-boundary vulnerability and give the first in-depth study of them. We investigate three
typical boundaries in the system that inter-boundary vulnerabilities are prone to occur, including the
kernel-user boundary, the hardware-OS boundary, and the VMM-guest OS boundary. Then, based on
the investigation of 115 real-world vulnerability cases, we extract four vulnerability types and provide
analysis for each type to illustrate the principle. Finally, we discuss the state-of-the-art techniques that
are relevant to the detection, prevention, and exploitation of such vulnerabilities, aiming to light the

future research on this topic.

1. Introduction

The hierarchical structure is the foundation of the com-
puter system, which facilitates system design and implemen-
tation. However, owing to the complex functionality, such
as data exchange, privilege isolation, and error disposal, the
interaction part between different system layers is usually
the weakness of the system. Besides, modern optimization
schemes, such as concurrent processing and asynchrioniza-
tion communication, also enlarge the security risks. Thus,
communication between different system layers tends to have
security flaws.

Shared memory is a fundamental and widespread com-
munication scheme for the inter-domain communication of
modern computer systems. The main reason for its popu-
larity is the performance advantage compared to the other
message-based communication mechanisms. However, the
shared memory scheme is also vulnerable when used for
cross-layer communication. Communication-based on shared
memory usually requires additional synchronization, such as
locks and mutexes. Otherwise, concurrent access to shared
data can cause memory corruption errors. These synchro-
nization methods require all communication partners to par-
ticipate, otherwise, the synchronization cannot be enforced.
This usually is not a problem when all communication par-
ticipants operate on the same privilege level, such as com-
munication between normal processes or between threads.
However, when one side of the communication is less priv-
ileged, the shared memory interface becomes a trust bound-
ary, and the situation becomes complicated [1]. Since high-
level synchronization methods are not enforced in shared
memory interfaces, they can simply be ignored, causing data

*Corresponding author
%9 pfwang@nudt.edu.cn (P. Wang)
2 wpengfei . github. io (P. Wang)
ORCID(S): 0000-0003-3408-4153 (P. Wang)

inconsistency. Such data inconsistency can sabotage the trust
boundary and cause security vulnerability, which can lead
to severe consequences, such as memory corruption errors
and sensitive information disclosure. We call it the “inter-
boundary vulnerability”.

The inter-boundary vulnerability exists in the communi-
cation between different system layers (or domains). Differ-
ent from the concurrency bugs, the inter-boundary vulnera-
bility usually occurs where there is a privilege gap, known
as the trust boundary. Consequently, the misuse of synchro-
nization primitives by one communication partner (usually
the privileged one) gives a chance to the less privileged (ma-
licious) partner to cause harmful results to the privileged
one. Although there is a large amount of research on the
safe use of shared resources, such as the race conditions [2,
3,4, 5,6, 7, 8] and concurrency bugs [9, 10, 11, 12, 13,
14, 15], they usually focus on the insecure behavior caused
by the misuse of synchronization primitives. They do not
take the existence of a malicious communication partner into
account, thus, hardly applicable to the detection of secu-
rity vulnerabilities in the thrust boundary. Therefore, inter-
boundary vulnerability is a new research point that supple-
ments these researches.

Previous research has raised the awareness of the double-
fetch vulnerability [16, 17, 18, 19, 20]. The double-fetch
vulnerability is a subclass of the inter-boundary vulnerabil-
ity, which is caused by the violation of the read-after-read
data dependency between the kernel address space and user
address space. However, as we have mentioned above, such
vulnerability is theoretically not limited to the kernel-user
boundary nor the read-after-read data dependency. Thus, in
this paper, we propose the concept of inter-boundary vulner-
ability and give the first in-depth study of it. We broaden the
scope of this topic by studying more system boundary types
and analyzing more data dependency types, aiming to light

Pengfei Wang et al.: Preprint submitted to Elsevier

Page 1 of 13

wpengfei.github.io

Sabotaging the System Boundary: A Study of the Inter-boundary Vulnerability

the future research on this topic. In summary, we make the
following contributions.

- We extract three system boundaries that inter-boundary
vulnerabilities are prone to occur, including the kernel-
user boundary, the hardware-OS boundary, and the
VMM-guest OS boundary.

- We investigate 115 real-world inter-boundary vulner-
ability cases and categorize four inter-boundary vul-
nerability types based on the analysis of these cases.
We have made the collected vulnerabilities available
online for the security community for further research.

- We review the state-of-the-art techniques that are rel-
evant to the detection, exploitation, and prevention of
the inter-boundary vulnerability, and point out chal-
lenges for the future work.

The rest of the paper is organized as follows: Section 2
reviews the background knowledge of this topic and intro-
duces the vulnerability-prone boundaries in the system. Sec-
tion 3 classifies the inter-boundary vulnerabilities and ana-
lyzes related works on detection, exploitation, and preven-
tion. Section 4 gives an in-depth analysis of this topic. Sec-
tion 5 discusses the perspectives and challenges for the future
work, followed by conclusions.

2. Background

2.1. The Shared Memory Scheme

Shared memory is a fundamental and widespread com-
munication scheme for the inter-domain communication of
modern computer systems. The main reason for its popu-
larity is the performance advantage compared to the other
message-based communication mechanisms, such as pipes
or message queues, which are implemented on top of sys-
tem calls [1].

When the data is transferred between two processes, a
message-oriented approach requires at least two additional
copies into the kernel as the pipe and message queue resides
in the kernel. The sender triggers a copy from the user space
to pass data to the kernel, and the receiver uses another copy
to get the data from the kernel back into the user space [21].
However, for the shared memory scheme, the procedure is
straightforward. It shares the physical memory pages by
mapping them into the virtual address space of multiple ex-
ecution contexts (user space process). The shared memory
scheme only has a one-time setup cost. After creating the
page-mapping, data transfers between two contexts do not
require any involvement of the kerne. Instead, simple mem-
ory reads and writes are used, which avoids the expensive
copy operations [1]. Thus, it has a performance advantage.

Based on the shared memory, communication usually re-
quires proper synchronization between the communication
partners, such as the mutexes, locks, and semaphores. How-
ever, an obvious limitation of these synchronization meth-
ods are that they require all communication partners to par-
ticipate, otherwise, the synchronization cannot proceed [1].

Kernel Function H First fetch H Second fetch }—‘
5| shared data] L

data tamper

Kernel Space W
User Space
User Thread

Racing Thread

& Time Window———>1

Figure 1: lllustration of how the double-fetch vulnerability in
the kernel-user boundary occurs.

This usually is not a problem when all communication par-
ticipants operate on the same privilege level, such as com-
munication between normal processes or between threads.
However, when one side of the communication has less priv-
ilege, the shared memory interface becomes a trust bound-
ary, and the situation becomes complicated. From a secu-
rity perspective, the higher privilege side of the communi-
cation needs to protect itself against the malicious behavior
of its counterpart. Thus, the privileged code operating on
the shared memory needs auditing for security vulnerabili-
ties. Such situations include the communication between the
kernel space and user space, the communication between the
hardware and the operating system (OS), and the communi-
cation between the VMM and the guest OS. Since high-level
synchronization methods are not enforced in shared memory
interfaces, they can simply be ignored, causing potential vul-
nerabilities.

2.2. Boundaries in the System

Modern computer systems have a hierarchical structure,
and the complex function is divided and implemented in ab-
stracted layers. Each layer (also known as a domain) con-
ducts a relatively centralized and straightforward job to fa-
cilitate the system design and implementation. The isolation
between the two domains also improves the security scheme,
forming a virtual boundary. From a security point of view,
a boundary is a privilege gap between two domains. The
higher privilege side needs to protect itself against potential
malicious behaviors of its counterpart, such as the boundary
between the kernel and user address space. In this paper, we
choose the kernel-user boundary, the hardware-OS bound-
ary, and the VMM-OS boundary as representatives to give a
detailed analysis of the inter-boundary vulnerability.

2.2.1. The Kernel-user Boundary

In the modern computer system, for security purposes,
the memory address space is divided into the kernel space
and user space. The kernel space is where the kernel code
executes, while the user space is where regular user pro-
cesses run [17]. Although the kernel space and the user
space are both virtually and physically isolated, owing to
the kernel privilege, some memory data that resides in the
user space is accessible by both the kernel and the user pro-
cess [16].

A typical vulnerability type that crosses the kernel-user
boundary is the double-fetch vulnerability [16, 18, 20, 19].
In 2008, Fermin J. Serna [22] first introduced the term“double

Pengfei Wang et al.: Preprint submitted to Elsevier

Page 2 of 13

Sabotaging the System Boundary: A Study of the Inter-boundary Vulnerability

Kernel

Time Window

Peripheral
Device

Kernel First Fetch Second Fetch
Function to Verify to Use

Data in the
- 1/0 Memory <

% Memory-
! mapped 10
Unexpected Registers
Data Change RAM
from the Device Peripheral

Device

Figure 2: lllustration of how the double-fetch vulnerability in
the hardware-OS boundary occurs [25].

fetch” to describe a special kernel vulnerability type that was
caused by a race condition between the kernel and user space.
A double fetch is a situation that the kernel (e.g., via a syscall)
reads the same value that resides in the user space twice, the
first time to verify the value and the second time to use the
value [23]. As Figure | shows, such a situation turns into a
double-fetch vulnerability when a concurrently running user
thread tampers the value between the two kernel reads un-
der a race condition, then, when the kernel reads the value
a second time to use, it gets a different one [17]. The data
inconsistency introduced by the double-fetch vulnerability
could lead to problematic consequences such as privilege
escalation, information leakage, kernel crash, etc [17]. The
famous KHOBE attack [24] is a typical application of the
double-fetch vulnerability to bypass the security software on
the system [17].

The double-fetch vulnerability is different from the typ-
ical race condition because the kernel-user boundary sepa-
rates the race condition in a double-fetch vulnerability. The
kernel space only contains two reads, and the write resides
in the user space. Moreover, the write from the user space is
usually potential, which does not necessarily exist in regular
times, but can be crafted by a malicious user to create a race
condition when triggering the vulnerability [17].

2.2.2. The Hardware-OS Boundary
In a computer system, a boundary exists between the
hardware device and the software. When attaching to the

system, the peripheral devices are controlled by the OS. Specif-

ically, the OS controls the hardware device by writing to and
reading from its registers [25]. Most of the time, a device
has several registers, and they are accessed at consecutive
addresses, either in the memory address space or in the I/O
address space [25]. The I/O memory is simply a region of
RAM-like locations that the device makes available to the
processor over the bus. For example, the memory-mapped
I/O scheme uses the same address space to address both the
physical memory and the I/O devices, and the CPU uses the
same instructions used to access the physical memory to ac-
cess the device registers and device memory [25]. Each I/O
device monitors the CPU’s address bus and responds to any
CPU access of an address assigned to that device, connecting
the data bus to the desired device’s hardware register [25].
Both memory-mapped registers and memory-mapped device

dom0 domU

Privileged OS Modified OS

User
Applications

Xen Management
Tools

Backend driver |

Hypercall API

‘ Hardware ‘

i
W

Frontend driver

Xen Hypervisor

Figure 3: Architecture of the virtualized system.

memory are called the /O memory because the difference
between registers and memory from peripheral devices is
transparent to software [25]. Thus, accessing the I/O mem-
ory is in the same fashion as accessing the regular mem-
ory, and memory-corruption errors can also occur in the I/O
memory.

A recent study [25] reveals a new double-fetch vulnera-
bility type that crosses the hardware-OS boundary. As Fig. 2
shows, this vulnerability occurs when the OS controls a pe-
ripheral device by accessing the I/O memory. The kernel
reads the “same” I/O memory data twice, assuming the data
is unchanged. However, since the driver is unable to validate
the attached device fully, the compromised hardware could
tamper the peripheral data mapped in the I/O memory be-
tween the two reads, causing data inconsistency for the OS.
Such data inconsistency may lead to severe problems for the
system functioning or even a security vulnerability [25].

This double-fetch vulnerability is different from the tra-
ditional one because it crosses different boundaries. The in-
volvement of peripheral devices makes the new case a com-
plicated problem. For example, in a traditional double-fetch
vulnerability, the kernel fetches data from user space, and
the user thread tampers the shared data under race condi-
tions. But in this peripheral type, the tampered data resides
in the I/O memory, and the data is modified by the peripheral
device.

2.2.3. The VMM-guest OS Boundary

In the virtualized system, a new software layer is intro-
duced, called the virtual machine monitor (VMM) or the hy-
pervisor. Each virtual machine (VM) consists of the virtual
memory, the virtual CPUs, and the virtualized devices. The
VMM is responsible for managing the accesses from each
running virtual machine to the hardware, giving a guest OS
the illusion to be running on real physical hardware.

In a virtualized system, the VMM runs in the ring 0 mode,
which has access to privileged instructions, the entire mem-
ory space, and the I/O. For security purposes, the virtual
hardware must isolate from each VM, and the privileged op-

Pengfei Wang et al.: Preprint submitted to Elsevier

Page 3 of 13

Sabotaging the System Boundary: A Study of the Inter-boundary Vulnerability

erations of the guest OS must be restricted. There are two
ways to realize such restrictions. VM Ware uses binary trans-
lation to dynamically replaces privileged operations with em-
ulated versions that operate on the virtual hardware [26].
Xen uses para-virtualization to modify the guest OS to re-

place all privileged operations with calls to the VMM APIs [27].

As aresult, the guest OS kernel is moved to a less privileged
ring, making the VMM the only code running in ring O.

As Fig. 3 shows, the Xen hypervisor operates directly on
top of the hardware and hosts many virtual machines called
domains. Among them, dome is a privileged management do-
main, running a typical Linux system with all the manage-
ment tools required for the hypervisor and its guests; domu is
the unprivileged para-virtualized guest, running a modified
guest OS. The guest OS does not interact with the real hard-
ware. Instead, it communicates directly with the hypervisor
using the hyper-call API (an interface similar to the regular
system call interface). As a result, all privileged function-
ality is restricted to dome, and the actions performed by the
domU kernel can only affect its own VM.

The para-virtualized guest uses a split driver model to
access the virtual hardware devices, which consists of the
frontend and backend components. The frontend driver in
domU works as a regular hardware device driver in the guest
OS. When the virtual device is accessed, the frontend driver
sends a request to the backend driver in dome, which pro-
cesses the request and manipulates the real hardware de-
vice [1]. The core mechanism used for inter-domain com-
munication between the backend and frontend components
is the shared memory,

Even though the privileges of backend components is re-
stricted to reduce the impact of a vulnerability, for the per-
formance reason, many backend components are directly im-
plemented in the kernel of the management system, making
full isolation impossible. Thus, attacks on the backend com-
ponents of para-virtualized drivers can directly lead to a full
dom@ compromise. Such compromise is as critical as a com-
promise of the Xen hypervisor itself because dome is a priv-
ileged management domain that has access to the complete
state of all other guests and communicates directly with the
hardware. Thus, the inter-domain communication via shared
memory between the frontend and backend drivers is a po-
tential attack surface.

3. Introduction to the Inter-boundary
Vulnerability

The inter-boundary vulnerability occurs when different
system layers (or domains) communicating via the shared
memory scheme. Communication partners access the shared
data without proper use of the required synchronization can
violate the data consistency and cause memory corruption
errors. The privilege gap between the communication part-
ners can turn such memory errors to security vulnerabili-
ties that breach the trust boundary. As Fig. 4 shows, an
inter-boundary vulnerability consists of the following five
elements:

Privileged Domain

|

l

| Dependent

| Access Pair
L Virtual

Privilege Boundary

Gap — —< Shared Memory Data > —————

|

|

i Interleaving

; Access

\j

Less Privileged Domain

Figure 4: lllustration of the inter-boundary vulnerability.

(1) Isolated domains. Two functional isolated or re-
stricted domains. Isolated domains work in an asynchro-
nized way but with proper communications. For example,
the kernel space and user space are isolated by the restriction
of the address space. However, they can communicate with
each other via various schemes, such as the system calls.

(2) Shared memory data. The isolated domains con-
duct communication via shared memory data, such as pass-
ing arguments and synchronization. The shared data can be
global variables, heap objects, or data blocks that are being
processed concurrently. Since both of the communication
partners can access the shared data, the synchronization is
of vital importance. However, it is usually hard to enforce
both sides of the communication.

(3) The privilege gap. Since the functionality of each
domain is centralized and secured, the isolation between two
domains forms a virtual boundary. From a security point of
view, a boundary usually has a privilege gap, which protects
the privileged domain (such as the kernel space) from the
malicious behaviors of the less privileged counterpart (such
as the user space).

(4) The dependent access pair. Shared data accessi-
ble to both of the two domains. When a domain launches
multiple accesses to the shared data, the accesses can be de-
pendent. For instance, two reads can be dependent as the
first is used to check the data, while the second is to use the
data. Such dependency also includes read-after-write, write-
after-read, and double-write. We give a detailed analysis in
the next subsection.

(5) The interleaving access. When a domain has a de-
pendent access pair to the shared data, the other domain can
launch an interleaving access to the shared data between the
access pair. For example, a write from one domain can inter-
leave between two dependent reads from the other domain to
tamper the data, causing a buggy result.

3.1. Classification

An inter-boundary vulnerability involves three memory
accesses to the same shared variable — two local dependent
accesses from the privileged domain and one remote inter-
leaving access from the less privileged domain. When the
remote access occurs between the two local accesses, there

Pengfei Wang et al.: Preprint submitted to Elsevier

Page 4 of 13

Sabotaging the System Boundary: A Study of the Inter-boundary Vulnerability

Table 1
The theoretical inter-boundary vulnerability types.
Types Description
Rz Two local reads interleaved by a remote
Wi | write, making the two reads have different
R- views of the same memory location.
Wha Local read after write interleaved by a remote
Wi | write. The local read does not get the local
R result it expects.
Wh Two local writes interleaved by a remote
Ri | read, leaking the intermediate result between
W- the writes to the remote read.
Rz Local write-after-read interleaved by a re-
Wi | mote write, which violates the dependency
W- of the local write-after-read.

* The subscripts 1 and 2 indicate the two local accesses in the
privileged domain while i indicates the interleaving access
from the less privileged domain. The R and W indicate the
read and write respectively.

84 static long vbg_misc_device_ioctl(struct file *filp, unsigned int req,
85 unsigned long arg) {

94 if (copy_from_user(&hdr, (void *)arg, sizeof(hdr)))
95 return -EFAULT;

100 if (hdr.size_in < sizeof(hdr) ||

101 (hdr.size_out && hdr.size_out < sizeof(hdr)))

102 return -EINVAL;

103

104 size = max(hdr.size_in, hdr.size_out);

17 if (is_vmmdev_req)

118 buf = vbg_req_alloc(size, VBG_IOCTL_HDR_TYPE_DEFAULT);
119 else

120 buf = kmalloc(size, GFP_KERNEL);

121 if (!buf)

122 return -ENOMEM;

123
124 if (copy_from_user(buf, (void *)arg, hdr.size_in)) {

125 ret = -EFAULT;

126 goto out;

127 3}

128 if (hdr.size_in < size)

129 memset(buf + hdr.size_in, @, size - hdr.size_in);
130

131 ret = vbg_core_ioctl(session, req, buf);

Figure 5: A double-read type inter-boundary vulnerability in
the kernel-user boundary.

should theoretically form eight combinations. However, only
four of them can cause buggy results, shown in Table 1.
Accordingly, we categorize the inter-boundary vulnerabil-
ities into four types: the double-read (shorted as R-R) type,
the read-after-write (shorted as W-R) type, the double-write
(shorted as W-W) type, and the write-after-read (shorted as
R-W) type. In the following subsections, we use real-world
cases to illustrate how each type of vulnerability occurs.

3.1.1. The Double-read Type

The double-read type, also known as the double-fetch
vulnerability, is the most prevalent inter-boundary vulnera-
bility type, which has manifested in all the three boundary

types.
Figure 5 shows a double-read type inter-boundary vul-

118 void snd_msndmidi_input_read(void *mpuv){

126 while (readw(mpu->dev->MIDQ+JQS_wTail) != readw(mpu->dev->MIDQ+JQS_wHead)) {
127 ul6 wTmp, val;

128 val = readw(pwMIDQData + 2 * readw(mpu->dev->MIDQ + JQS_wHead));
129

130 if (test_bit(MSNDMIDI_MODE_BIT_INPUT_TRIGGER, &mpu->mode))

132 snd_rawmidi_receive(mpu->substream_input, (unsigned char *)&val, 1);
135 wTmp = readw(mpu->dev->MIDQ + JQS_wHead) + 1;

136 if (wTmp > readw(mpu->dev->MIDQ + JQS_wSize))

137 writew(@, mpu->dev->MIDQ + JQS_wHead);

138 else

139 writew(wTmp, mpu->dev->MIDQ + JQS_wHead);

140 3}

142 }

Figure 6: A double-read type inter-boundary vulnerability in
the hardware-OS boundary.

nerability in the kernel-user boundary (CVE-2018-12633),
which occurs in /drivers/virt/vboxguest/vboxguest_linux.c
of Linux-4.16.8. In function vbg_misc_device_ioctl(), the
driver reads the same user data twice by copy_from_user().
The first read copies the message header (stored in hdr), which
is used to verify the size variables (line 100-102), such as
hdr.size_in and hdr.size_out. Then, a kernel buffer is allo-
cated based on variable size (line 117-122). In the second
read (line 124), the whole message is copied into the buffer,
and the header part is copied again. Though the header part
is double-fetched, the critical variables such as hdr.size_in
and hdr.size_out are only verified after the first read but not
after the second read. Thus, the user data could be tampered
between the two reads by a concurrently running malicious
user thread under a race condition. Since the kernel buffer is
allocated based on the variables from the first read, whereas
the buffer is used with variables from the second read in
vbg_core_ioctl() (line 131), the malicious data tamper from
the user side can lead to a kernel buffer over-access.

Figure 6 shows a double-read type inter-boundary vul-
nerability in the hardware-OS boundary (CVE-2017-9985),
which occurs in file /sound/isa/msnd/msnd_midi.c of Linux-
4.10.1. The kernel uses wrapper function readw() to read
hardware device data from the I/O memory to the kernel.
Function snd_msndmidi_input_read() uses a header pointer
mpu->dev->MIDQ + JQS_wHead to process a message queue, and
pointer value is fetched twice at line 126 and line 128, re-
spectively. The first time is to prevent queue over-access by
comparison with the tail pointer, whereas the second time
is to get the message data from the queue and send it by
snd_rawmidi_receive(). This double-fetch situation of the
header pointer is vulnerable because the pointer resides in
the peripheral device register, and the value of the pointer
is likely to be changed between the two reads of the pointer.
Once the pointer value is tampered by unexpected data flips
or intentionally compromised hardware, an array (or queue)
over-access could occur.

Figure 7 shows a simplified version of a double-read type
inter-boundary vulnerability in the VMM-guest OS bound-
ary, which affects xen_disk, a block backend implementation
in Xen. Xen defines helper function blkif_get_x86_64_req()

Pengfei Wang et al.: Preprint submitted to Elsevier

Page 5 of 13

Sabotaging the System Boundary: A Study of the Inter-boundary Vulnerability

1 void blkif_get_x86_64_req(blkif_request_t xdst,
blkif_x86_64_request_t *src){

2 int i, n = BLKIF_MAX_SEGMENTS_PER_REQUEST;
3

4 dst->operation = src->operation;

5 dst->nr_segments = src->nr_segments;

6 /7 ...

7 if (src->operation == BLKIF_OP_DISCARD) {
8 /..

9 3

10 if (n > src->nr_segments)

11 n = src->nr_segments;

12 for (i =0; i <n; i++)

13 dst->segli] = src->segli];

14)

Figure 7: A double-read type inter-boundary vulnerability in
the VMM-guest OS boundary.

NTSTATUS NTAPI NtGetSystemVersion(
PUNICODE_STRING UnicodeString,
PWCHAR Buffer,

DWORD BufferLength

UnicodeString->Length = 0;
UnicodeString->MaximumLength = BufferLength;

]
2
3
4
5) {
6
7
8 UnicodeString->Buffer = Buffer;

9

10 Rt1lAppendUnicodeToString(UnicodeString,

1" L"Microsoft_Windows.[Version_10.0.16299]");
12

13 return STATUS_SUCCESS;

14 3}

Figure 8: A read-after-write type inter-boundary vulnerability
in the kernel-user boundary.

to parse and copy frontend requests from the shared memory
to a private buffer. Variable src points into the shared mem-
ory between the frontend and backend driver, and two con-
secutive accesses (lines 10 and 11) to the nr_segments field
of src form a typical scene of a double-fetch vulnerability.
A malicious user can bypass the check at line 10 and trigger
a heap overflow in the backend by tampering the value of
src->nr_segments between line 10 and 11 in the shared mem-
ory. The exploitation works by setting src->nr_segments to
a smaller value than n to pass the condition check, but then
change it to a greater value before line 11. Consequently, it
could cause an overflow in the loop afterward [1].

3.1.2. The Read-after-write Type

The read-after-write type is very similar to the double-
read type. A privileged domain writes to a memory address
in a less privileged domain and subsequently reads from it
with the assumption that the written value has remained un-
changed, however, the value could have been changed.

Figure 8 shows a read-after-write type inter-boundary
vulnerability that crosses the kernel-user boundary [28]. The
syscall handler initializes object UnicodeString at lines 6-8.
Then, it uses Rt1AppendUnicodeString to fill the object with a
textual representation of the system version. However, this
procedure is problematic because the latter routine assumes
the object it receives is non-volatile, but in fact, the object
contains a user-mode pointer Buffer whose data may change

typedef struct _USERNAME {
UNICODE_STRING String;
WCHAR Buf[128];

} USERNAME, *PUSERNAME;

1
2
3
4
5
6 NTSTATUS NTAPI NtGetAdminUsername(PUSERNAME OutputUser) {
7 USERNAME LocalUser;

8

9 RtlZeroMemory(&LocalUser, sizeof(USERNAME));

10

1 StringCchCopy(LocalUser.Buf, 128, "Administrator");

12 RtlInitUnicodeString(&LocalUser.String, LocalUser.Buf);
13

14 RtlCopyMemory(OutputUser, &LocalUser, sizeof (USERNAME));
15 OutputUser->String.Buf = OutputUser->Buf;

16

17 return STATUS_SUCCESS;

18 }

Figure 9: A double-write type inter-boundary vulnerability in
the kernel-user boundary.

asynchronously during the syscall execution. This situation
can be exploited by a malicious concurrent thread under a
race condition, changing the value of UnicodeString->Buffer
to the kernel address space within the time window between
the initialization of the pointer and its usage.

In the read-after-write type, the vulnerable code trusts
the contents of user-mode memory not because it has already
read it once (like the double-read type), but because it has ex-
plicitly initialized it to a specific value [28]. However, this
vulnerability type is observed to be Windows-specific be-
cause it is strongly tied to the direct user-mode pointer ma-
nipulation in Windows 1'128].

3.1.3. The Double-write Type

The double-write type is an inter-boundary vulnerabil-
ity type that usually causes information leakage. A domain
(primarily a high privilege domain) can write sensitive in-
formation to the other domain but later overwrites it with
legitimate data in the same context scope. Such a situation
can cause sensitive information disclosure as the receiver do-
main can obtain the initially written data within a limited
duration.

In practice, a typical scenario of this kind is when a data
structure containing pointers is used to store data both in the
kernel mode and user mode. When a syscall copies such an
internal kernel structure to the user space, it first copies the
object to the memory, then, it adjusts the pointers to point
to the corresponding userland buffers. However, since the
original kernel-mode pointers reside in the user memory for
a short period before being overwritten with the appropri-
ate addresses, the user can use it to obtain sensitive kernel
information and attack the kernel [28].

Figure 9 shows an example of the double-write type inter-
boundary vulnerability that crosses the kernel-user bound-
ary 2. The structure _USERNAME is an object that includes a

ILinux use copy functions to manipulate pointers when crossing the
kernel boundary, such as copy_from_user().

2Windows Kernel ring-0 address leak via a double-write in Nt-
QueryVirtualMemory(MemoryMappedFilenamelnformation). https://
bugs.chromium.org/p/project-zero/issues/detail?id=1456

Pengfei Wang et al.: Preprint submitted to Elsevier

Page 6 of 13

https://bugs.chromium.org/p/project-zero/issues/detail?id=1456
https://bugs.chromium.org/p/project-zero/issues/detail?id=1456

Sabotaging the System Boundary: A Study of the Inter-boundary Vulnerability

Thread 1 Thread 2

void withdraw(unsigned int amount) void deposit(unsigned int amount)
f

{ {

1 lock(L); 2.1 lock(L);
2 temp = account->balance; 2.2 temp = account->balance;
3 unlock(L); 2.3 unlock(L);
1.4 temp = temp - amount; 2.4 temp = temp + amount;
2.5 lock(L);
1.5 lock(L); / 2.6 account->balance=temp;
1.6 account->balance=temp; 2.7 unlock(L);

1.7 unlock(L);
}

Figure 10: A write-after-read type atomicity-violation bug in
the thread boundary.

string and its corresponding textual buffer. A local object of
this type is first initialized at lines 11-12 and later copied to
the user at line 14. Since the pointer Buf in the object that
passed to user-mode still contains a kernel address, it is over-
written with a pointer to the user buffer at line 15. However,
a time window is available for another thread to capture the
disclosed kernel pointer between lines 14 and 15, causing
information leakage.

Owing to reasons such as the C language nature, the cur-
rent compilation techniques, the system allocator design, and
the code optimization schemes, unintentional information
leakage is difficult to avoid in the interaction that crosses
a boundary [28]. Such vulnerability can be used to leak
any sensitive data type, especially the kernel-mode pointers,
which could help the attackers to bypass KASLR (Kernel
Address Space Layout Randomization). Besides, the disclo-
sure of the kernel-mode pointers also facilitates the exploita-
tion of other kernel vulnerabilities.

3.1.4. The Write-after-read Type

A write-after-read type is different from the previous two
types. In this type, the local write relies on a value from the
preceding local read that is then overwritten by the remote
write. Although we haven’t found real examples of this type
in the hard boundaries, it is well-known in the thread bound-
ary as a kind of atomicity-violation bug. Figure 10 shows
an example of the write-after-read bug type that crosses the
thread boundary. In this case, two threads are handling a
shared bank account, one to withdraw the money (Thread
1) and the other to deposit the money (Thread 2). A shared
variable account->balance is accessible to both of the two
threads. An atomicity violation occurs when the read (line
1.2) and update (line 1.6) of account->balance in Thread 1 is
interleaved by the update operation (line 2.6) in a concurrent
running Thread 2 (as the arrows indicate). This atomicity vi-
olation makes the deposit operations in Thread 2 ineffective
because the update (line 1.6) of account->balance in Thread 1
is based on the read (line 1.2) of account->balance in Thread
1, which occurs before the update (line 2.6) in Thread 2.
Thus, the update of Thread 2 is overwritten by Thread 1.

Similarly, the update operation in Thread 1 (line 1.6) can
also interleave between the read (line 2.2) and update (line
2.6) of account->balance in Thread 2 to make the withdraw
operations in Thread 1 ineffective.

The write-after-read type is rare in the hard boundary,
and this is because of the privilege gap. Even if a remote
write from a less privileged domain violates the write-after-
read dependency in a privileged domain, the worst result is
that the privileged domain writes wrong data to the less priv-
ileged one. However, this leaves no harmful result to the
privileged domain.

3.2. Detection

Current detection research of the inter-boundary vulner-
abilities mainly focuses on the kernel-user boundary. A few
works also attempt to dig the hardware-OS boundary and the
VMM-guest OS boundary.

3.2.1. The Kernel-user Boundary

For the kernel-user boundary, the research focuses on the
double-read type inter-boundary vulnerability, also known
as the double-fetch vulnerability. The detection approach
generally has two categories: the dynamic approach and the
static approach.

Jurczyk and Coldwind [23] carried out the first study on
the double-fetch vulnerabilities in their Bochspwn project.
They dynamically instrumented the Windows kernel in an
emulator to observe read operations on the same user space
address within a short time. They found 36 real EoP vulner-
abilities from Windows. However, their analysis and find-
ings are limited to Windows, and their dynamic approach has
low code coverage and high runtime overhead. Schwarz et
al. [20] combined the side channel cache-attack and kernel-
fuzzing to detect double-fetch vulnerabilities. However, their
approach is limited to Linux syscalls, missing significant
numbers of vulnerabilities occur in non-syscall functions,
such as drivers. Pan et al. [29] detect double-fetch vulner-
abilities with a virtualization monitor. They capture various
dynamic behaviors of kernel execution from the hypervisor
level and detect kernel vulnerability based on these context
information, which has a significant efficiency improvement
over Bochspwn. However, as a dynamic approach, their ap-
proach still has a low path coverage. It can only test one ex-
ecution path per time and cannot test drivers when the hard-
ware is absent.

Wang et al. [16] presented the first static approach to de-
tect double-fetch vulnerabilities in the Linux kernel. Using
a pattern-matching analysis, they identified 6 new double-
fetch vulnerabilities. Their approach can cover the complete
kernel source code, including all drivers and all hardware ar-
chitectures, without relying on the hardware support. How-
ever, their approach is limited to intra-procedure analysis,
and the analysis partially relies on the manual review. Xu
et al. [19] proposed a formal definition for the double-fetch
bugs and used static analysis techniques with symbolic check-
ing to vet for double-fetch bugs. Their approach can do inter-
procedure analysis, which improves the bug coverage. How-
ever, their definition includes situations that are not currently

Pengfei Wang et al.: Preprint submitted to Elsevier

Page 7 of 13

Sabotaging the System Boundary: A Study of the Inter-boundary Vulnerability

buggy and only have the potential to turn into bugs when the
code is updated. Besides, their approach needs to compile
the source code to LLVM IR and specify the target archi-
tecture. Thus, it detects only one architecture at one time
and misses the true case (such as CVE-2016-6130) when the
source code cannot be compiled. Nevertheless, they iden-
tified a new double-fetch vulnerability (CVE-2017-15037)
from FreeBSD. Wang et al. [30] leverage the fact that a double-
fetch vulnerability lacks a recheck and proposed a static ap-
proach. Their approach first infers the “checks” in the branch
based on the error code. Then, it employs backward analy-
sis and data-flow analysis to find uses of the critical vari-
ables. Finally, it traverses execution paths to find potential
modifications of the critical variables and check the absent
rechecks. Their approach emphasized the use of the critical
variables, which avoids the inaccuracy in Xu’s [19] defini-
tion. However, it still has a false positive rate of 99.3%, and
the 2,808 reported cases need manual confirmation.

In 2018, Jurczyk [28] reloaded the Bochspwn project and
combined taint tracking to detect kernel information leak
vulnerabilities, which includes the read-after-write type and
the double-write type inter-boundary vulnerability. In addi-
tion, taint tracking is also leveraged by Wang et al. [18] and
Wang et al. [30] to detect double-read type inter-boundary
vulnerabilities.

3.2.2. The Hardware-OS Boundary

Lu et al. [25] presents the first dedicated study of the
hardware double-fetch vulnerabilities between the periph-
eral hardware and the operating system, which provides a
new perspective to the inter-boundary vulnerability by in-
creasing the scope to include the hardware-OS boundary.
Based on a static pattern-matching approach, they discov-
ered four previously unknown double-fetch vulnerabilities in
the hardware-OS boundary from the Linux kernel. However,
their approach is preliminary, which has a high false report
rate and relies on manual efforts. Then, Song et al. [31] used
fuzzing to detect hardware double-fetch vulnerabilities in the
hardware-OS boundary. They proposed a probing frame-
work, which hooks into the kernel’s page fault handling mech-
anism to monitor and log traffic between device drivers and
their corresponding hardware, and mutate the data stream
on-the-fly using a fuzzing component. By imitating the ad-
versarial attacker on the peripheral devices, the framework
found 9 previously unknown vulnerabilities. However, this
approach cannot guarantee code coverage. Besides, crashes
in the kernel lead to system reboots, which introduces sig-
nificant latency. Thus, the efficiency is limited.

3.2.3. The VMM-guest OS Boundary

Wilhelm [1] used an approach similar to the Bochspwn
project to detect double-fetch vulnerabilities in the VMM-
guest OS boundary. He analyzed the memory access pattern
of para-virtualized devices’ backend components and dis-
covered three new double-fetch vulnerabilities in the security-
critical backend components. It is worth mentioning that one
of the discovered vulnerabilities did not exist in the source

Exploit process

create_thread()

Trigger thread

Invoke
target program

Attacking thread

Local
dependent
access pair

Second access g

|
|
|
I

> Remote
~

malicious access

Finish

Figure 11: The process of the inter-boundary vulnerability ex-
ploitation.

join_thread()

code but was introduced through compiler optimization (CVE-
2015-8550) because the compiler optimizes the code in a
way that a second fetch is conducted instead of reusing the
value from the first fetch. Wilhelm’s work enriches the inter-
boundary vulnerability diversity by including the VMM-guest
OS boundary. However, his approach has similar drawbacks
as Bochspwn’s, such as low path coverage, high runtime
overhead, and hardware support dependency.

3.3. Exploitation

The key to exploiting an inter-boundary vulnerability is
to insert the remote less privileged access to interleave be-
tween the privileged dependent access pair, shown in Fig-
ure 11. Different from the exploitation of the concurrency
errors that only need to switch the thread scheduling, to ex-
ploit the inter-boundary vulnerability, the attacker has to cre-
ate a remote attack thread to perform the malicious behavior.
When the remote access is a write, the goal is to tamper the
shared data to violate the dependency between the local ac-
cess pair, causing memory corruption. When the remote is
a read, the goal is to read the shared data between the two
local writes, causing information disclosure. For the for-
mer, shared data tampering can occur in several situations.
(1) Race conditions. The shared data structures (e.g., global
variables and heap objects) can be modified under races, and
shared variables between threads can also be modified under
races. (2) Design errors. The shared data can be potentially
modified by the thread itself owing to the logic errors in the
design. (3) Implementation defect. Shared data can also be
modified by a vulnerable implementation, such as type cast-
ing or integer overflow [30]. (4) Hardware data flip. For vul-
nerabilities in the hardware-OS boundary, the shared data in
the I/O memory can be flipped from the hardware side.

Pengfei Wang et al.: Preprint submitted to Elsevier

Page 8 of 13

Sabotaging the System Boundary: A Study of the Inter-boundary Vulnerability

As far as we have investigated, currently, viable exploita-

tion of the inter-boundary vulnerability is limited to the double-

read type. The exploitation process involves two threads:
a triggering thread to invoke the vulnerable function, and
a racing thread to flip the data within the time window of
the two fetches [17]. Jurczyk and Coldwind also gave the
first study on exploiting the double-fetch vulnerability. They
pointed out that the key to successfully exploit a double-
fetch vulnerability is to broaden the time window between
the two fetches. They provided some tricks to realize this
goal, such as placing the shared data across the page bound-
ary, disabling the page cacheability, and flushing the TLB
(Translation Lookaside Buffers) before reading the data [23].

Hammou [32] achieved privilege escalation by exploit-
ing a double-fetch vulnerability in a Windows driver. The
kernel-mode driver fetches a user pointer UserAddress twice,
the first fetch accesses the IRP SystemBuffer to get the ad-
dress (pointed by UserAddress) of the user input, and the sec-
ond one performs ProbeForWrite on it to get the data. By sup-
plying a valid user-mode address to ProbeForWrite for check
and then quickly switching the UserAddress field to a de-
sired kernel-mode address, the exploitation can write 4 bytes
data to any kernel memory location. In this way, an attacker
can set the TokenObject->Privileges.Enabled field of the at-
tacker’s process to Oxffffffff to escalates the privilege [17].

Similar exploitation work also includes CVE-2005-2490
and CVE-2016-6516. Maiki provided exploitation on CVE-
2005-2490 and placed the crafted user data across the page
boundary, which could increase the time window by trigger-
ing a page fault when accessing the data from more than one
page [33]. A page fault could suspend the working thread
that is fetching the user data. Meanwhile, a malicious thread
could be swapped in and tamper the data before the fetching
thread gets scheduled again [17]. Bauer [34] exploits CVE-
2016-6516 and could control which cache the overflow hap-
pens on [17]. However, the success rate is limited as the time
window is usually very small. Schwarz et al. [20] proposed
an exploitation approach based on the flush + reload side-
channel attack, which could precisely trigger the data switch
right after the first fetch, increasing the success rate to 97%.

Theoretically, the exploitation process of the read-after-
write type is basically the same as the double-read type ex-
cept that the remote data tampering is inserted to a local ac-
cess pair whose first access is a write. For the double-write
type, reading data within the time window is more workable
than writing data to it. Besides, failure of reading data within
the time window causes no effect, however, writing data out-
side the time window causes an unpredictable result. Thus,
the exploitation of the double-write types is more accessible
than the other types.

3.4. Prevention

Known attempts to prevent inter-boundary vulnerabili-
ties are also limited to the double-read type. Based on the
investigation of the real-world vulnerability patches, Wang
et al. [16] provided strategies on preventing the double-fetch
vulnerabilities and invented a tool based on pattern-matching

Table 2

Statistics of the known vulnerability investigation
Boundaries RR W-R WW RW Sum
Kernel-User 100 1 3 - 104
Hardware-OS 8 - - - 8
VMM-guest OS 3 - - - 3
Total 111 1 3 - 115

to patch known vulnerabilities automatically. It was the first
attempt to prevent and fix such vulnerabilities. Their strate-
gies are summarized as the following suggestions.

- Copy the data incrementally. For the data structure
that has a double-fetched part, we only read that part
once, and skip that part to read the rest for the second
time [16].

- Use the data from the same read. Even though some
data is read twice, we only use the version from the
first read and ignore the second read, which avoids the
risk of being tampered [16].

- Override with values from the first read. To avoid
the cross-use of data from different reads, we use the
data from the first read to override the data from the
second read. Thus, only one data version is left and
used [16].

- Check the data before use. Compare the data from
the first read with the data of the second read. If the
data is not identical, the operation is safely aborted.
This approach can both allow detecting attacks by ma-
licious users and protecting from situations in which
the data is changed without malicious intent, such as
design errors and implementation defects [16].

The key to these strategies is to avoid using both data
from the two reads. Although their prevention strategies
only give suggestions on how to avoid such vulnerability and
rely on the experience of the programmer, they are classic
and influence the followers. Xu et al. [19] also provide sim-
ilar but refined suggestions to mitigate such vulnerabilities.
However, such prevention strategies are only limited to the
double-read type and not suitable for other types.

In addition to these strategies, Schwarz et al. proposed to
eliminate double-fetch vulnerabilities with hardware trans-
actional memory [20] (e.g., Intel TSX and ARM TrustZone),
which is innovative and effective. In addition to the mani-
fested vulnerabilities, their approach can also eliminate the
compiler introduced one (CVE-2015-8550). Luo et al. pro-
posed to combine pattern-matching and transactional mem-
ory to prevent such vulnerability [35]. A merit of such trans-
actional memory-based approach is that it is suitable for all
inter-boundary vulnerability types.

4. In-depth analysis

4.1. Statistics

We investigated 115 known inter-boundary vulnerabili-
ties collected from academic works [36, 1, 17, 28] and the
CVE (Common Vulnerabilities and Exposures) database. For

Pengfei Wang et al.: Preprint submitted to Elsevier

Page 9 of 13

Sabotaging the System Boundary: A Study of the Inter-boundary Vulnerability

some of the vulnerabilities, we also tried to obtain the buggy
source code and corresponding patches from the relevant
repositories and archives, which includes the Linux repos-
itory on Github, the Linux Kernel Mailing List Archive, and
the Kernel Bugzilla. We have made the vulnerabilities we
collected available for the security community for further re-
search’.

As Table 2 shows, we categorize the vulnerabilities we
collected by the vulnerability type and the boundary. From
the perspective of the boundary, most of the investigated vul-
nerabilities are subject to the kernel-user boundary, account-
ing for 90.4%. This percentage is following the fact that most
research focuses on the interaction between the kernel and
user space. From the perspective of the vulnerability type,
the double-read type is the most prevalent type that mani-
fests in all the three boundaries, which has an overall pro-
portion of 96.5%. On the contrary, we did not identify any
write-after-read type from the known vulnerabilities. This
is because of the privilege gap. For a write-after-read type,
even if a remote write from the less privilege domain vi-
olates the write-after-read dependency in a privileged do-
main, the less privileged domain cannot corrupt the privi-
leged one. However, this type is not rare in the concurrency
bugs, whose communication partners have an equal privi-
lege. For the read-after-write type and the double-write type,
though only manifested in the kernel-user boundary, theo-
retically, they could also exist in the other two boundaries.
Take the double-write type as an example. In addition to the
three disclosed vulnerabilities in the kernel-user boundary,
the researcher also found the other 20 kernel pool address
leakage vulnerabilities that are subject to the double-write
type [37]. However, since Microsoft changed the bar for
a security bulletin, their reports were instead targeted to be
fixed in the next version of Windows. Unfortunately, these
reports were not revealed. For the read-after-write type, Lu
et al. [38] also found plenty of such cases when detecting
double-read type vulnerabilities in the hardware-os bound-
ary. However, they did not give a detailed analysis at that
time and left them to future work. Thus, in the future, we
should pay more attention to these two vulnerability types,
especially in the unmanifested boundaries.

4.2. Consequences

According to the real-world case analysis, inter-boundary
vulnerabilities can cause two kinds of direct consequences:
memory corruption and information disclosure. Both of the
double-read type and the read-after-write type can cause mem-
ory corruption, which accounts for 97.4%, while the double-
write type can only cause information disclosure, which has
a proportion of 2.6%. More specifically, memory corruption
can further cause denial-of-service, privilege escalation, au-
diting bypass, and also information disclosure. It is worth
noting that denial-of-services have various reasons, such as
buffer overflow, array over access, and NULL pointer deref-
erence. Besides, though the memory corruption can also
lead to information disclosure, it is different from the one

3https ://github.com/wpengfei/IBV.git

7%

0
21% 39% privilege escalation

‘ & auditing bypass

4

Figure 12: The percentages of different consequences.

denial of service

“information disclosure

caused by the double-write type. The double-write type dis-
closes the intermediate sensitive data within a short dura-
tion, while the disclosure in the memory corruption is usu-
ally caused by buffer over-bound write to the user space. As
Figure 12 shows, the overall proportions of the major con-
sequences of the investigated cases are 22%, 39%, 32%, and
7% for denial-of-service, privilege escalation, auditing by-
pass, and information disclosure, respectively.

4.3. Differences

Though concurrency plays a significant role in the root
cause of inter-boundary vulnerabilities, the inter-boundary
vulnerability is different from the concurrency bugs. The
atomicity-violation bug is one of the most common and sig-
nificant concurrency bug types. An atomicity violation oc-
curs when a code block is unexpectedly interleaved by opera-
tions from other concurrent threads. It turns to an atomicity-
violation bug if the unfortunate interleaving breaks the atom-
icity assumptions made by the programmer and leads to in-
correct program behaviors. Atomicity-violation bugs widely
exist because many programmers are used to sequential think-
ing and frequently assume code regions to be atomic with-
out proper enforcement [9]. However, the inter-boundary
vulnerability is different from the atomicity-violation bug in
the following aspects.

- Different boundaries. The concurrency bugs occur
among regular threads. However, the inter-boundary
vulnerabilities exist in different system boundaries, such
as the kernel-user boundary, the hardware-OS bound-
ary, and the VMM-guest OS boundary.

- Different privilege levels. The concurrency bugs oc-
cur in the communication between domains that have
an equal privilege level. In contrast, the inter-boundary
vulnerability has a privilege gap between the commu-
nication partners, which can cause more severe con-
sequences, such as privilege escalation.

- Different research focuses. Research on the concur-
rency bugs focuses on waving the thread interleaving

Pengfei Wang et al.: Preprint submitted to Elsevier

Page 10 of 13

https://github.com/wpengfei/IBV.git

Sabotaging the System Boundary: A Study of the Inter-boundary Vulnerability

to discover the misuse of synchronization primitives,
which does not take the existence of a malicious com-
munication partner into account. However, the study
of the inter-boundary vulnerability focuses on safe com-
munication over the trust boundary, including poten-
tial malicious behaviors.

A Time-Of-Check to Time-Of-Use (TOCTTOU in short)
bug occurs when a program checks for a particular charac-
teristic of an object, to take some action based on the as-
sumption that the characteristic still holds. However, it ac-
tually does not hold any longer [39]. TOCTTOU bugs are
most common in the Unix file system, which can date back
to the 1990s. A TOCTTOU bug is similar to the double-read
inter-boundary vulnerability, and the data inconsistency in a
TOCTOU bug is usually caused by a race condition owing
to improper synchronization of the concurrent accesses to
a shared object. However, the TOCTTOU bug is specific
to the shared objects (e.g., a file or a socket), and it usually
does not cross a privilege gap, which is different from the
inter-boundary vulnerabilities.

Thus, the inter-boundary vulnerabilities are different from
the well-studied concurrency bugs and TOCTTOU bugs, and
worth a dedicated study.

S. Perspective

In this paper, we choose the kernel-user boundary, the
hardware-OS boundary, and the VMM-guest OS boundary
as representatives to illustrate the inter-boundary vulnera-
bility. However, in addition to these three boundary types,
other boundaries in the system can also cause inter-boundary
vulnerabilities. For instance, the wrapped interfaces, such as
the syscall wrapper functions, handle parameters from the
user application and introduce a new boundary between the
syscall and the user application [40]. Besides, technologies
also create new system layers and form new boundaries, such
as the container in Docker forms a boundary between the
container and the application, which also has a privilege gap
and thus could cause inter-boundary vulnerabilities. Future
work should bring more such boundary types into research.
From Table 2, we can see that, compared to the double-read
type, the read-after-write type and the double-write type are
less aware and lack systematic study. Future work should
also pay more attention to these two vulnerability types, es-
pecially in the unmanifested boundaries.

So far, the research to the inter-boundary vulnerabilities
concentrates on the detection, while the prevention and fix
works are minimal and preliminary. The inter-boundary vul-
nerability is difficult to detect, which can hide for over ten
years (CVE-2016-6480) before being exposed [16]. Since
the malicious behaviour in the communication partner is po-
tential, state-of-the-art fuzzing-based tools [41, 42, 43, 44]
or concurrency bug tools [9, 10, 11, 12, 13, 14] are not work-
able to detect such vulnerability. Thus, researchers take ad-
vantage of the specific patterns of the inter-boundary vul-
nerability to devise dedicated tools. Based on the investiga-
tion of the source code, Wang et al. [16] extract three typi-

cal patterns that double-fetch vulnerabilities are prone to oc-
cur, including the size-checking, type-selection, and shallow
copy. Then, Xu et al. [19] provided more refined patterns,
including the dependency lookup, protocol/signature check-
ing, and information guessing. For the hardware double-
fetch vulnerability in the hardware-OS boundary, Lu et al. [25]
also categorized patterns based on the feature of the [/O mem-
ory, including common check, loop check, wait check, sta-
ble check, configure check, check and use, and block check.
These patterns are beneficial for improving the accuracy of
the detection approach. However, there are obvious short-
comings of current approaches. Dynamic approaches have
limited code coverage, high runtime overhead, and rely on
hardware support; static approaches have high false posi-
tives, rely on the source code, and to some extent, require
additional manual efforts. Future work should try to over-
come these challenges.

During the real-world case analysis, we noticed some in-
dividual inter-boundary vulnerability cases caused by faults
at the implementation level instead of the commonly-seen
coding phase. For example, the case (CVE-2015-8550) in-
troduced by compiler optimization [1] and the case occurred
in a macro [17]. Such cases are less-aware but more destruc-
tive. Moreover, some cases are platform-specific. For exam-
ple, the read-after-write situations are more likely to cause
vulnerabilities at the Windows platform because it uses di-
rect pointer dereference to access inter-boundary data, while
other platforms, such as Linux and FreeBSD, use dedicated
wrapper functions. Lacking a clear distinction between dif-
ferent domain pointers in Windows makes it bug-prone. Fu-
ture work should also consider such implementation and plat-
form feature to dig hidden cases.

For prevention, known works mainly provide suggestions
to improve developers’ coding habits to mitigate the occur-
rence of the vulnerability. However, such mitigation strate-
gies are only limited to the logic of the double-read type.
From the perspective of system survivability, sometimes, tol-
erate the attacks caused by such inter-boundary vulnerabili-
ties is more practical and viable than discovering and fixing
the vulnerability. As an open problem, improve the system’s
robustness is another solution for the system designer. One
attempt is using the hardware transactional memory (e.g., In-
tel TSX and ARM TrustZone) to keep the atomicity of the
accesses from the same domain [20][35], which is theoret-
ically helpful to all the inter-boundary vulnerability types.
However, it depends on hardware support. Another possi-
ble way is memory read-only mapping. Modern operating
systems nowadays implement read-only memory mappings
at their CPU architecture level to prevent security attacks.
By mapping memories as read-only, the kernel can trust the
memory content, eliminating the potentially malicious data
mutation from the user space. Thus, it is useful for the re-
sistance of double-read and read-after-write type vulnerabil-
ities. However, a significant drawback is that not all the user
data can be mapped as read-only. In the future, we should
lay more emphasis on approaches to practically prevent or
tolerate such vulnerabilities.

Pengfei Wang et al.: Preprint submitted to Elsevier

Page 11 of 13

Sabotaging the System Boundary: A Study of the Inter-boundary Vulnerability

The study of the inter-boundary vulnerability also shows
insights for some open problems in system security. For ex-
ample, “do the inter-boundary patterns also motivate other
vulnerabilities?”, “can such problem occur in a different level
of granularity throughout the system?”, “is there an unex-
pected way to exploit such vulnerability?” At the end of this
paper, we would like to provide a preliminary answer.

Most of the double-read type inter-boundary vulnerabil-
ities we investigated are the “‘check-use” situation, where the
check comes first and followed by the use, and the atomicity
of the “check-use” relation is violated during inter-boundary
memory accesses. However, a particular situation exists in
the system where the shared data is used before checking,
i.e., a “use-check” situation, which can also lead to a security
vulnerability. This is because, to optimize the instruction
processing performance, modern CPUs adopt out-of-order
execution and speculative execution. However, these mech-
anisms allow the CPU to prefetching sensitive memory data
to the CPU cache before verifying the privilege, breaking
the privilege isolation of the system, which can lead to se-
vere vulnerability such as Meltdown [45] and Spectre [46].
These vulnerabilities occur at the instruction level, which is
a finer granularity than regular inter-boundary vulnerabil-
ities. An attacker can obtain sensitive information in the
CPU cache via a “flush+reload” side-channel attack. Al-
though side-channel is not a conventional way to exploit the
inter-boundary vulnerability, it has been used by Schwarz et
al. [20] to exploit the double-fetch bug. Since the discovery
of Meltdown and Spectre was a piece of breaking news in
2018, and these vulnerabilities have been well-studied, we
would not repeat any longer. We hope the above discussion
could give some inspiration for future research.

6. Conclusions

The inter-boundary vulnerability is a new research point
that worth dedicated study. In this paper, we gave the first
in-depth study of it. We investigated three commonly seen
boundaries in the system that inter-boundary vulnerabilities
are prone to occur. We extracted four inter-boundary vul-
nerability types based on the investigation of 115 real-world
cases and illustrated the principle of each type. We also dis-
cussed the state-of-the-art techniques that are relevant to the
detection, prevention, and exploitation of such vulnerabili-
ties, aiming to light the future research on this topic.

Acknowledgement

The authors would like to sincerely thank all the review-
ers for your time and expertise on this paper. Your insight-
ful comments help us improve this work. This work is par-
tially supported by the National High-level Personnel for De-
fense Technology Program (2017-JCJQ-ZQ-013), the HU-
NAN Province Natural Science Foundation (2017RS3045,
20191150729), and the National Natural Science Foundation
China (61472437, 61902412, 61902416).

References

(1]

[2

—

3

—

[4

=

[5

—

[6

=

[7

—

[8

—_

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Felix Wilhelm. Tracing privileged memory accesses to discover soft-
ware vulnerabilities. Master’s thesis, Karlsruher Institut fiir Technolo-
gie, 2015.

Jan Wen Voung, Ranjit Jhala, and Sorin Lerner. Relay: static race
detection on millions of lines of code. In Proceedings of the the 6th
Joint meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software engi-
neering, pages 205-214. ACM, 2007.

Polyvios Pratikakis, Jeffrey S Foster, and Michael Hicks. Locksmith:
Practical static race detection for c. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 33(1):3, 2011.

Jun Chen and Steve MacDonald. Towards a better collaboration of
static and dynamic analyses for testing concurrent programs. In Pro-
ceedings of the 6th workshop on Parallel and distributed systems:
testing, analysis, and debugging, page 8. ACM, 2008.

Dawson Engler and Ken Ashcraft. Racerx: effective, static detection
of race conditions and deadlocks. In ACM SIGOPS Operating Systems
Review, volume 37, pages 237-252. ACM, 2003.

Koushik Sen. Race directed random testing of concurrent programs.
ACM SIGPLAN Notices, 43(6):11-21, 2008.

Baris Kasikci, Cristian Zamfir, and George Candea. Racemob:
crowdsourced data race detection. In Proceedings of the twenty-fourth
ACM symposium on operating systems principles, pages 406—422.
ACM, 2013.

Kai Lu, Zhendong Wu, Xiaoping Wang, Chen Chen, and Xu Zhou.
Racechecker: efficient identification of harmful data races. In 2015
23rd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, pages 78-85. IEEE, 2015.

Shan Lu, Soyeon Park, and Yuanyuan Zhou. Finding atomicity-
violation bugs through unserializable interleaving testing. [EEE
Transactions on Software Engineering, 38(4), 2012.

Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO: de-
tecting atomicity violations via access interleaving invariants. In Ar-
chitectural Support for Programming Languages and Operating Sys-
tems, 2006.

Min Xu, Rastislav Bodik, and Mark D Hill. A serializability viola-
tion detector for shared-memory server programs. In Programming
Language Design and Implementation, 2005.

Cormac Flanagan and Stephen N Freund. Atomizer: a dynamic atom-
icity checker for multithreaded programs. In Symposium on Principles
of Programming Languages, 2004.

Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam.
Maple: a coverage-driven testing tool for multithreaded programs. In
Object Oriented Programming Systems Languages and Applications,
2012.

Jeff Huang and Charles Zhang. Persuasive prediction of concurrency
access anomalies. In Proceedings of the 2011 International Sympo-
sium on Software Testing and Analysis, pages 144-154. ACM, 2011.
Pengfei Wang, Jens Krinke, Xu Zhou, and Kai Lu. Avpredictor: Com-
prehensive prediction and detection of atomicity violations. Concur-
rency and Computation: Practice and Experience, page €5160, 2019.
Pengfei Wang, Jens Krinke, Kai Lu, Gen Li, and Steve Dodier-Lazaro.
How double-fetch situations turn into double-fetch vulnerabilities: A
study of double fetches in the linux kernel. In 26th USENIX Security
Symposium (USENIX Security 17), pages 1-16, 2017.

Pengfei Wang, Kai Lu, Gen Li, and Xu Zhou. A survey of the double-
fetch vulnerabilities. Concurrency and Computation: Practice and
Experience, 30(6):e4345, 2018.

Pengfei Wang, Kai Lu, Gen Li, and Xu Zhou. Dftracker: detecting
double-fetch bugs by multi-taint parallel tracking. Frontiers of Com-
puter Science, 13(2):247-263, 2019.

Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo
Kim. Precise and scalable detection of double-fetch bugs in os kernels.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 661—
678. IEEE, 2018.

Michael Schwarz, Daniel Gruss, Moritz Lipp, Clémentine Maurice,
Thomas Schuster, Anders Fogh, and Stefan Mangard. Automated de-

Pengfei Wang et al.: Preprint submitted to Elsevier

Page 12 of 13

[21]

[22]

(23]

(24]

[25]

[26]
[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

[37]

[38]

Sabotaging the System Boundary: A Study of the Inter-boundary Vulnerability

tection, exploitation, and elimination of double-fetch bugs using mod-
ern cpu features. arXiv preprint arXiv:1711.01254, 2017.

'W. Richard Stevens, Bill Fenner, and Andrew M. Rudoff. Unix net-
work programming, volume 2. In Addison-Wesley Professional, 2004.
Fermin J. Serna. MS08-061 : the case of the kernel mode double-
fetch. [Online.] https://blogs.technet.microsoft.com/srd/2008/10/
14/ms@8-061-the-case-of-the-kernel-mode-double-fetch/.

Mateusz Jurczyk and Gynvael Coldwind. Identifying and exploiting
windows kernel race conditions via memory access patterns. Techni-
cal report, Google Research, 2013. [Online]. http://research.google.
com/pubs/archive/42189.pdf.

Matousec. Khobe-8.0 earthquake for windows desktop security soft-
ware. [Online]. http://www.matousec.com/info/articles/khobe-8.0-
earthquake-for-windows-desktop-security-software.php, 2010.

Lu Kai, Peng Fei Wang, Gen Li, and Zhou Xu. Untrusted hardware
causes double-fetch problems in the i/0 memory. Journal of Computer
Science and Technology, 33(3):587-602, 2018.

Andrew S. Tanenbaum. Modern Operating Systems. 2002.

Paul Barham, Boris Dragovic, Keir Fraser, H Steven, and Andrew
Warfield. Xen and the art of virtualization. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, vol-
ume 37, 2003.

Mateusz Jurczyk. Detecting kernel memory disclosure with x86 em-
ulation and taint tracking. [Online]. https://j00ru.vexillium.org/
papers/2018/bochspwn_reloaded. pdf, 2018.

Jianfeng Pan, Guanglu Yan, and Xiaocao Fan. Digtool: A
virtualization-based framework for detecting kernel vulnerabilities. In
26th USENIX Security Symposium, pages 149—-165. USENIX Asso-
ciation, 2017.

Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. Check it again:
Detecting lacking-recheck bugs in os kernels. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, pages 1899-1913. ACM, 2018.

Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky,
Yeoul Na, Stijn Volckaert, Giovanni Vigna, Christopher Kruegel,
Jean-Pierre Seifert, and Michael Franz. Periscope: An effective prob-
ing and fuzzing framework for the hardware-os boundary.

Souhail Hammou. Exploiting windows drivers: Double-
fetch race condition vulnerability. [Online]. http://resources.
infosecinstitute.com/exploiting-windows-drivers-double-fetch-
race-condition-vulnerability/, 2016.

Maiki. Vulnerability caused by inconsistency checking.
https://maikiforever.wordpress.com/2011/10/07/,2011.
Scott Bauer. Linux >= 4.5 double fetch leading to heap over-
flow. [Online]. http://www.openwall.com/lists/oss-security/2016/
07/31/6, 2016.

Y. Luo, P. Wang, X. Zhou, and K. Lu. Dftinker: Detecting and fix-
ing double-fetch bugs in an automated way. In Wireless Algorithms,
Systems, and Applications, 2018.

Mateusz Jurczyk and Gynvael Coldwind. Bochspwn: Iden-
tifying O-days via system-wide memory access pattern analy-
sis. Black Hat 2013, 2013. [Online]. http://vexillium.org/dl.
php?BH2013_Mateusz_Jurczyk_Gynvael_Coldwind.pdf.

TinySec. I am also got multi case of "double-write". [Online]. https:
//twitter.com/TinySecEx/status/943410888119218176, 2017.

Kai Lu, Peng-Fei Wang, Gen Li, and Xu Zhou. Untrusted hardware
causes double-fetch problems in the i/0 memory. Journal of Computer
Science and Technology, 33(3):587-602, 2018.

[Online].

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Matt Bishop, Michael Dilger, et al. Checking for race conditions in
file accesses. Computing systems, 2(2):131-152, 1996.

Robert NM Watson. Exploiting concurrency vulnerabilities in system
call wrappers. In First USENIX Workshop on Offensive Technologies,
WOOT °07, 2007.

Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshi-
taishvili, Shuang Hao, Christopher Kruegel, and Giovanni Vigna. Di-
fuze: Interface aware fuzzing for kernel drivers. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 2123-2138. ACM, 2017.

HyungSeok Han and Sang Kil Cha. Imf: Inferred model-based fuzzer.

In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 2345-2358. ACM, 2017.

Dae R Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung
Lee, and Insik Shin. Razzer: Finding kernel race bugs through
fuzzing. Proceedings of the IEEE PressSymposium on Security and
Privacy, pages 279-293, 2019.

Shankara Pailoor, Andrew Aday, and Suman Jana. Moonshine: Op-
timizing {OS} fuzzer seed selection with trace distillation. In 27th
{USENIX} Security Symposium ({ USENIX} Security 18), pages 729—
743, 2018.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yu-
val Yarom, and Mike Hamburg. = Meltdown. arXiv preprint
arXiv:1801.01207, 2018.

Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. arXiv preprint arXiv:1801.01203,2018.

Pengfei Wang received his B.S., M.S. degrees, and
Ph.D. in 2011, 2013, and 2018, respectively, from
the College of Computer, National University of
Defense Technology, Changsha. He is now an as-
sistant professor in the College of Computer, Na-
tional University of Defense Technology. His re-
search interests include operating systems and soft-
ware testing.

Xu Zhou received his B.S., M.S. degrees, and
Ph.D. in 2007, 2009, and 2014, respectively, from
the College of Computer, National University of
Defense Technology, Changsha. He is now an as-
sistant professor in the College of Computer, Na-
tional University of Defense Technology. His re-
search interests include operating systems and par-
allel computing.

Kai Lu received his B.S. degree and Ph.D. in 1995
and 1999, respectively, from the College of Com-
puter, National University of Defense Technology,
Changsha. He is now a professor in the College of
Computer, National University of Defense Tech-
nology. His research interests include operating
systems, parallel computing, and security.

Pengfei Wang et al.: Preprint submitted to Elsevier

Page 13 of 13

https://blogs.technet.microsoft.com/srd/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fetch/
https://blogs.technet.microsoft.com/srd/2008/10/14/ms08-061-the-case-of-the-kernel-mode-double-fetch/
http://research.google.com/pubs/archive/42189.pdf
http://research.google.com/pubs/archive/42189.pdf
http://www.matousec.com/info/articles/khobe-8.0-earthquake-for-windows-desktop-security-software.php
http://www.matousec.com/info/articles/khobe-8.0-earthquake-for-windows-desktop-security-software.php
https://j00ru.vexillium.org/papers/2018/bochspwn_reloaded.pdf
https://j00ru.vexillium.org/papers/2018/bochspwn_reloaded.pdf
http://resources.infosecinstitute.com/exploiting-windows-drivers-double-fetch-race-condition-vulnerability/
http://resources.infosecinstitute.com/exploiting-windows-drivers-double-fetch-race-condition-vulnerability/
http://resources.infosecinstitute.com/exploiting-windows-drivers-double-fetch-race-condition-vulnerability/
https://maikiforever.wordpress.com/2011/10/07/
http://www.openwall.com/lists/oss-security/2016/07/31/6
http://www.openwall.com/lists/oss-security/2016/07/31/6
http://vexillium.org/dl.php?BH2013_Mateusz_Jurczyk_Gynvael_Coldwind.pdf
http://vexillium.org/dl.php?BH2013_Mateusz_Jurczyk_Gynvael_Coldwind.pdf
https://twitter.com/TinySecEx/status/943410888119218176
https://twitter.com/TinySecEx/status/943410888119218176

